首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We address the question of which phase space functionals might represent a quantum state. We derive necessary and sufficient conditions for both pure and mixed phase space quantum states. From the pure state quantum condition we obtain a formula for the momentum correlations of arbitrary order and derive explicit expressions for the wave functions in terms of time-dependent and independent Wigner functions. We show that the pure state quantum condition is preserved by the Moyal (but not by the classical Liouville) time evolution and is consistent with a generic stargenvalue equation. As a by-product Baker's converse construction is generalized both to an arbitrary stargenvalue equation, associated to a generic phase space symbol, as well as to the time-dependent case. These results are properly extended to the mixed state quantum condition, which is proved to imply the Heisenberg uncertainty relations. Globally, this formalism yields the complete characterization of the kinematical structure of Wigner quantum mechanics. The previous results are then succinctly generalized for various quasi-distributions. Finally, the formalism is illustrated through the simple examples of the harmonic oscillator and the free Gaussian wave packet. As a by-product, we obtain in the former example an integral representation of the Hermite polynomials.  相似文献   

2.
In this paper we consider a neutral spinning particle in interaction with a linear increasing rotating magnetic field and a scalar harmonic potential using the path integral formalism. The Pauli matrices which describe the spin dynamics are replaced by two fermionic oscillators via the Schwinger’s model. The calculations are carried out explicitly using fermionic exterior current sources. The problem is then reduced to that of a spinning forced harmonic particle whose spin is coupled to exterior derivative current sources. The result of the propagator is given as a series which is exactly summed up by means of the Laplace transformation and the use of some recurrence formula of the oscillator wave functions. The energy spectrum and the corresponding wave functions are also deduced.  相似文献   

3.
A. Lecheheb  M. Merad 《Annals of Physics》2007,322(5):1233-1246
The propagator relating to the evolution of a particle on the D-sphere and the D-pseudosphere, subjected to the Coulomb potential, was reconsidered in the Faddeev-Senjanovic formalism. The mid-point is privileged. The space-time transformations used make it possible to regularize the singularity and to bring back the problem to its dynamical symmetry SU (1, 1).  相似文献   

4.
We show that a wide class of non-central potentials can be analysed via the improved picture of the Nikiforov- Uvarov method [Physica Scripta 75 (2007) 686]. It has been shown that using the alternative approach, polynomial solutions of three-dimensional separable non-central potential can be obtained.  相似文献   

5.
We obtain the solutions of two-dimensional singular oscillator which is known as the quantum Calogero-Sutherland model both in cartesian and parabolic coordinates within the framework of quantum Hamilton Jacobi formalism. Solvability conditions and eigenfunctions are obtained by using the singularity structures of quantum momentum functions under some conditions. New potentials are generated by using the first two states of singular oscillator for parabolic coordinates.  相似文献   

6.
The solution of D-dimensional Coulomb system is solved in momentum space by path integral. From which the topological effect of a magnetic flux in the system is given. It is revealed that the flux effect represented by the two-dimensional field of Aharonov-Bohm covers any space-dimensions.  相似文献   

7.
We lift the constraint of a diagonal representation of the Hamiltonian by searching for square integrable bases that support an infinite tridiagonal matrix representation of the wave operator. The class of solutions obtained as such includes the discrete (for bound states) as well as the continuous (for scattering states) spectrum of the Hamiltonian. The problem translates into finding solutions of the resulting three-term recursion relation for the expansion coefficients of the wavefunction. These are written in terms of orthogonal polynomials, some of which are modified versions of known polynomials. The examples given, which are not exhaustive, include problems in one and three dimensions.  相似文献   

8.
High precision approximate analytic expressions of the ground state energies and wave functions for the spiked harmonic oscillator are found by first casting the correspondent Schrödinger equation into the nonlinear Riccati form and then solving that nonlinear equation analytically in the first iteration of the quasilinearization method (QLM). In the QLM the nonlinear differential equation is treated by approximating the nonlinear terms with a sequence of linear expressions. The QLM is iterative but not perturbative and gives stable solutions to nonlinear problems without depending on the existence of a smallness parameter. The choice of zero iteration is based on general features of exact solutions near the boundaries. Comparison of our approximate analytic expressions for binding energies and wave functions with the exact numerical solutions demonstrates their high accuracy in the wide range of parameters. The accuracy ranging between 10−3 and 10−7 for the energies and, correspondingly, 10−2 and 10−7 for the wave functions in the regions, where they are not extremely small is reached. The derived formulas enable one to make accurate analytical estimates of how variation of different interactions parameters affects the correspondent physical systems.  相似文献   

9.
We analyze the Scarf potential, which exhibits both discrete energy bound states and energy bands, through the quantum Hamilton-Jacobi approach. The singularity structure and the boundary conditions in the above approach, naturally isolate the bound and periodic states, once the problem is mapped to the zero energy sector of another quasi-exactly solvable quantum problem. The energy eigenvalues are obtained without having to solve for the corresponding eigenfunctions explicitly. We also demonstrate how to find the eigenfunctions through this method.  相似文献   

10.
Subir Ghosh 《Physics letters. A》2009,373(14):1212-1217
We study complexified Harmonic Oscillator with a position-dependent mass, termed as Complex Exotic Oscillator (CEO). The complexification induces a gauge invariance [A.V. Smilga, J. Phys. A 41 (2008) 244026, arXiv:0706.4064; A. Mostafazadeh, J. Math. Phys. 43 (2002) 205; A. Mostafazadeh, J. Math. Phys. 43 (2002) 2814; A. Mostafazadeh, J. Math. Phys. 43 (2002) 3944]. The role of PT-symmetry is discussed from the perspective of classical trajectories of CEO for real energy. Some trajectories of CEO are similar to those for the particle in a quartic potential in the complex domain [C.M. Bender, S. Boettcher, P.N. Meisinger, J. Math. Phys. 40 (1999) 2201; C.M. Bender, D.D. Holm, D. Hook, J. Phys. A 40 (2007) F793, arXiv:0705.3893].  相似文献   

11.
An unusual singular position-dependent-mass particle in an infinite potential well is considered. The corresponding Hamiltonian is mapped through a point-canonical-transformation and an explicit correspondence between the target Hamiltonian and a Pöschl-Teller type reference Hamiltonian is obtained. New ordering ambiguity parametric setting are suggested.  相似文献   

12.
We study relativistic quantum field theories in phase space, based on representations of the Poincaré group, using the Moyal product. We develop a perturbative theory for quantizing fields, with functional methods in phase space. The two-point function is related to relativistic Wigner functions for bosons and fermions. As an example we analyze the complex scalar field with quartic self-interaction.  相似文献   

13.
In this Letter, the combined dispersion equation was solved by the sub-equation method. It is shown that the combined dispersion equation with the special parameters can be solved and many novel solutions will derived in terms of Jacobi elliptic functions, where some known solutions will be recovered when the modulus arrives its limiting value.  相似文献   

14.
V.B. Mandelzweig   《Annals of Physics》2006,321(12):2810-2829
It is shown that the quasilinearization method (QLM) sums the WKB series. The method approaches solution of the Riccati equation (obtained by casting the Schrödinger equation in a nonlinear form) by approximating the nonlinear terms by a sequence of the linear ones, and is not based on the existence of a smallness parameter. Each pth QLM iterate is expressible in a closed integral form. Its expansion in powers of reproduces the structure of the WKB series generating an infinite number of the WKB terms. Coefficients of the first 2p terms of the expansion are exact while coefficients of a similar number of the next terms are approximate. The quantization condition in any QLM iteration, including the first, leads to exact energies for many well known physical potentials such as the Coulomb, harmonic oscillator, Pöschl–Teller, Hulthen, Hyleraas, Morse, Eckart, etc.  相似文献   

15.
In this work, we use linear invariants and the dynamical invariant method to obtain exact solutions of the Schrödinger equation for the generalized time-dependent forced harmonic oscillator in terms of solutions of a second order ordinary differential equation that describes the amplitude of the classical unforced damped oscillator. In addition, we construct Gaussian wave packet solutions and calculate the fluctuations in coordinate and momentum as well as the quantum correlations between coordinate and momentum. It is shown that the width of the Gaussian packet, fluctuations and correlations do not depend on the external force. As a particular case, we consider the forced Caldirola-Kanai oscillator.  相似文献   

16.
According to the Heisenberg correspondence principle, in the classical limit, quantum matrix element of a Hermitian operator reduces to the coefficient of the Fourier expansion of the corresponding classical quantity. In this article, such a quantum-classical connection is generalized to the relativistic regime. For the relativistic free particle or the charged particle moving in a constant magnetic field, it is shown that matrix elements of quantum operators go to quantities in Einstein’s special relativity in the classical limit. Especially, matrix element of the standard velocity operator in the Dirac theory reduces to the classical velocity. Meanwhile, it is shown that the classical limit of quantum expectation value is the time average of the classical variable.  相似文献   

17.
The intrinsically relativistic problem of a fermion subject to a pseudoscalar screened Coulomb plus a uniform background potential in two-dimensional space-time is mapped into a Sturm-Liouville. This mapping gives rise to an effective Morse-like potential and exact bounded solutions are found. It is shown that the uniform background potential determinates the number of bound-state solutions. The behaviour of the eigenenergies as well as of the upper and lower components of the Dirac spinor corresponding to bounded solutions is discussed in detail and some unusual results are revealed. An apparent paradox concerning the uncertainty principle is solved by recurring to the concepts of effective mass and effective Compton wavelength.  相似文献   

18.
B.Gö  nül 《中国物理快报》2004,21(12):2330-2333
Using the basic ingredient of supersymmetry, a simple alternative approach is developed to perturbation theory in one-dimensional non-relativistic quantum mechanics. The formulae for the energy shifts and wavefunctions do not involve tedious calculations which appear in the available perturbation theories. The model applicable in the same form to both the ground state and excited bound states, unlike the recently introduced supersymmetric perturbation technique which, together with other approaches based on logarithmic perturbation theory, are involved within the more general framework of the present formalism.  相似文献   

19.
Fractional derivative can be defined as a fractional power of derivative. The commutator (i/?)[H,⋅], which is used in the Heisenberg equation, is a derivation on a set of observables. A derivation is a map that satisfies the Leibnitz rule. In this Letter, we consider a fractional derivative on a set of quantum observables as a fractional power of the commutator (i/?)[H,⋅]. As a result, we obtain a fractional generalization of the Heisenberg equation. The fractional Heisenberg equation is exactly solved for the Hamiltonians of free particle and harmonic oscillator. The suggested Heisenberg equation generalize a notion of quantum Hamiltonian systems to describe quantum dissipative processes.  相似文献   

20.
We develop a five-well model for describing the tunnelling dynamics of Bose-Einstein condensates (BECs) trapped in 2D optical lattices. The tunnelling dynamics of BECs in this five-well model are investigated both analytically and numerically. We focus on the self-trapped states and the difference of the tunnelling dynamics among two- well, three-well and five-well systems. The criterions for the self-trapped states and the phase diagrams of the five trapped BECs in zero-phase mode and π-phase mode are obtained. We find that the criterions and the phase diagrams are largely modified by the dimension of the system and the phase difference 5etween wells. The five-well model is a good model and can give us an insight into the tunnelling dynamics of BECs trapped in 2D optical lattices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号