首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We address the question of which phase space functionals might represent a quantum state. We derive necessary and sufficient conditions for both pure and mixed phase space quantum states. From the pure state quantum condition we obtain a formula for the momentum correlations of arbitrary order and derive explicit expressions for the wave functions in terms of time-dependent and independent Wigner functions. We show that the pure state quantum condition is preserved by the Moyal (but not by the classical Liouville) time evolution and is consistent with a generic stargenvalue equation. As a by-product Baker's converse construction is generalized both to an arbitrary stargenvalue equation, associated to a generic phase space symbol, as well as to the time-dependent case. These results are properly extended to the mixed state quantum condition, which is proved to imply the Heisenberg uncertainty relations. Globally, this formalism yields the complete characterization of the kinematical structure of Wigner quantum mechanics. The previous results are then succinctly generalized for various quasi-distributions. Finally, the formalism is illustrated through the simple examples of the harmonic oscillator and the free Gaussian wave packet. As a by-product, we obtain in the former example an integral representation of the Hermite polynomials.  相似文献   

2.
A phase space treatment of special relativity of quantum systems is developed. In this approach a quantum particle remains localized if subject to inertial transformations, the localization occurring in a finite phase space area. Unlike in the non-relativistic case, relativistic transformations generally distort the phase space distribution function, being equivalent to aberrations in optics. The relativistic aberrations of massive particles are in general different from those of optical images.  相似文献   

3.
This paper considers the most general linear transformation of a quantum state. We enumerate the conditions necessary to retain a physical interpretation of the transformed state: hermiticity, normalization and complete positivity. We show that these can be formulated in terms of an associated transformation introduced by Choi in 1975. We extend his treatment and display the mathematical argumentation in a manner closer to that used in traditional quantum physics. We contend that our approach displays the implications of the physical requirements in a simple and intuitive way. In addition, defining an arbitrary vector, we may derive a probability distribution over the spectrum of the associated transformation. This fixes the average of the eigenvalue independently of the vector chosen. The formal results are illustrated by a couple of examples.  相似文献   

4.
We study relativistic quantum field theories in phase space, based on representations of the Poincaré group, using the Moyal product. We develop a perturbative theory for quantizing fields, with functional methods in phase space. The two-point function is related to relativistic Wigner functions for bosons and fermions. As an example we analyze the complex scalar field with quartic self-interaction.  相似文献   

5.
A new family of 2-component vector-valued coherent states for the quantum particle motion in an infinite square well potential is presented. They allow a consistent quantization of the classical phase space and observables for a particle in this potential. We then study the resulting position and (well-defined) momentum operators. We also consider their mean values in coherent states and their quantum dispersions.  相似文献   

6.
B. Belchev 《Annals of Physics》2009,324(3):670-681
Dito and Turrubiates recently introduced an interesting model of the dissipative quantum mechanics of a damped harmonic oscillator in phase space. Its key ingredient is a non-Hermitian deformation of the Moyal star product with the damping constant as deformation parameter. We compare the Dito-Turrubiates scheme with phase-space quantum mechanics (or deformation quantization) based on other star products, and extend it to incorporate Wigner functions. The deformed (or damped) star product is related to a complex Hamiltonian, and so necessitates a modified equation of motion involving complex conjugation. We find that with this change the Wigner function satisfies the classical equation of motion. This seems appropriate since non-dissipative systems with quadratic Hamiltonians share this property.  相似文献   

7.
Xin Li 《Physics letters. A》2008,372(30):4980-4984
In virtue of the quantum invariant theory, we obtain the rigorous solution of the isotropic bipartite system in rotational magnetic fields, based on which the general expression of the noncyclic geometric phase is worked out and the entanglement dependence of the noncyclic geometric phase in this model is investigated. We show that the influence of the coupling on noncyclic geometric phase depends on the initial condition of the system. We also show that when the magnetic fields are stationary, there is a more general class of states existed of which the noncyclic geometric phase could be interpreted solely in terms of the solid angle enclosed by the geodesically closed curve on a two-sphere parameterized by the evolving Schmidt coefficients.  相似文献   

8.
We introduce new representations to formulate quantum mechanics on noncommutative phase space, in which both coordinate-coordinate and momentum-momentum are noncommutative. These representations explicitly display entanglement properties between degrees of freedom of different coordinate and momentum components. To show their potential applications, we derive explicit expressions of Wigner function and Wigner operator in the new representations, as well as solve exactly a two-dimensional harmonic oscillator on the noncommutative phase plane with both kinetic coupling and elastic coupling.  相似文献   

9.
A deformed boson algebra is naturally introduced from studying quantum mechanics on noncommutative phase space in which both positions and momenta are noncommuting each other. Based on this algebra, corresponding intrinsic noncommutative coherent and squeezed state representations are constructed, and variances of single- and two-mode quadrature operators on these states are evaluated. The result indicates that in order to maintain Heisenberg's uncertainty relations, a restriction between the noncommutative parameters is required.  相似文献   

10.
We present a divergence-free WKB theory, which is a new semiclassical theory modified by nonperturbative quantum corrections. Conventionally, the WKB theory is constructed upon a trajectory that obeys the bare classical dynamics expressed by a quadratic equation in momentum space. Contrary to this, the divergence-free WKB theory is based on a higher-order algebraic equation in momentum space, which represents a dressed classical dynamics. More precisely, this higher-order algebraic equation is obtained by including quantum corrections to the quadratic equation, which is the bare classical limit. An additional solution of the higher-order algebraic equation enables us to construct a uniformly converging perturbative expansion of the wavefunction. Namely, our theory removes the notorious divergence of wavefunction at a turning point from the WKB theory. Moreover, our theory is able to produce wavefunctions and eigenenergies more accurate than those given by the traditional WKB method. In addition, the divergence-free WKB theory that is based on the cubic equation allows us to construct a uniformly valid wavefunction for the nonlinear Schrödinger equation (NLSE). A recent short letter [T. Hyouguchi, S. Adachi, M. Ueda, Phys. Rev. Lett. 88 (2002) 170404] is the opening of the divergence-free WKB theory. This paper presents full formalism of this theory and its several applications concerning wavefunction and eigenenergy to show that our theory is a natural extension of the traditional WKB theory that incorporates nonperturbative quantum corrections.  相似文献   

11.
By analyzing an instructive example, for testing many concepts and approaches in quantum mechanics, of a one-dimensional quantum problem with moving infinite square-well, we define geometric phase of the physical system. We find that there exist three dynamical phases from the energy, the momentum and local change in spatial boundary condition respectively, which is different from the conventional computation of geometric phase. The results show that the geometric phase can fully describe the nonlocal character of quantum behavior.  相似文献   

12.
C. Wetterich 《Annals of Physics》2010,325(7):1359-1389
Quantum particles can be obtained from a classical probability distribution in phase space by a suitable coarse graining, whereby simultaneous classical information about position and momentum can be lost. For a suitable time evolution of the classical probabilities and choice of observables all features of a quantum particle in a potential follow from classical statistics. This includes interference, tunneling and the uncertainty relation.  相似文献   

13.
In the frame of quantum mechanics, we consider an ensemble of spin-1/2 neutral particles passing through a Stern-Gerlach apparatus and explore how their motions depend on the initial phase difference between two internal spin states. Assuming the particles moving along y-axis, due to the initial phase difference between spin states, they not only split along the longitudinal direction (z-axis) but also separate along the lateral direction (x-axis). The dependence of the lateral displacement on the initial phase difference reminds one of the picture of a quantum interference. This generalized interference provides an alternative approach to measuring the initial phase difference. The experimental realization with ultracold atoms or Bose-Einstein condensates is also discussed.  相似文献   

14.
Schroedinger equation on a Hilbert space H, represents a linear Hamiltonian dynamical system on the space of quantum pure states, the projective Hilbert space PH. Separable states of a bipartite quantum system form a special submanifold of PH. We analyze the Hamiltonian dynamics that corresponds to the quantum system constrained on the manifold of separable states, using as an important example the system of two interacting qubits. The constraints introduce nonlinearities which render the dynamics nontrivial. We show that the qualitative properties of the constrained dynamics clearly manifest the symmetry of the qubits system. In particular, if the quantum Hamilton’s operator has not enough symmetry, the constrained dynamics is nonintegrable, and displays the typical features of a Hamiltonian dynamical system with mixed phase space. Possible physical realizations of the separability constraints are discussed.  相似文献   

15.
The stationary phase method is frequently adopted for calculating tunneling phase times of analytically-continuous Gaussian or infinite-bandwidth step pulses which collide with a potential barrier. This report deals with the basic concepts on deducing transit times for quantum scattering: the stationary phase method and its relation with delay times for relativistic and non-relativistic tunneling particles. After reexamining the above-barrier diffusion problem, we notice that the applicability of this method is constrained by several subtleties in deriving the phase time that describes the localization of scattered wave packets. Using a recently developed procedure - multiple wave packet decomposition - for some specifical colliding configurations, we demonstrate that the analytical difficulties arising when the stationary phase method is applied for obtaining phase (traversal) times are all overcome. In this case, we also investigate the general relation between phase times and dwell times for quantum tunneling/scattering. Considering a symmetrical collision of two identical wave packets with an one-dimensional barrier, we demonstrate that these two distinct transit time definitions are explicitly connected. The traversal times are obtained for a symmetrized (two identical bosons) and an antisymmetrized (two identical fermions) quantum colliding configuration. Multiple wave packet decomposition shows us that the phase time (group delay) describes the exact position of the scattered particles and, in addition to the exact relation with the dwell time, leads to correct conceptual understanding of both transit time definitions. At last, we extend the non-relativistic formalism to the solutions for the tunneling zone of a one-dimensional electrostatic potential in the relativistic (Dirac to Klein-Gordon) wave equation where the incoming wave packet exhibits the possibility of being almost totally transmitted through the potential barrier. The conditions for the occurrence of accelerated and, eventually, superluminal tunneling transmission probabilities are all quantified and the problematic superluminal interpretation based on the non-relativistic tunneling dynamics is revisited. Lessons concerning the dynamics of relativistic tunneling and the mathematical structure of its solutions suggest revealing insights into mathematically analogous condensed-matter experiments using electrostatic barriers in single- and bi-layer graphene, for which the accelerated tunneling effect deserves a more careful investigation.  相似文献   

16.
We show that the bipartite entanglement in the two-mode quantum kicked top can reveal the underlying chaotic and regular structures in phase space: namely, the entanglement displays a rapid rise after a very short time for an initial spin coherent state centred in a chaotic region of the phase space, whereas the entanglement displays a periodic modulation for the coherent state centred at an elliptic fixed point. The quantum-classical correspondence is investigated by studying the mean and maximal linear entropy.  相似文献   

17.
V.I. Man'ko  G. Marmo 《Physics letters. A》2008,372(24):4364-4368
Using general construction of star-product the q-deformed Wigner-Weyl-Moyal quantization procedure is elaborated. The q-deformed Groenewold kernel determining the product of quantum observables is given in explicit form for small nonlinearities corresponding to nonlinear vibrations of classical and quantum q-oscillators. The deformation of Groenewold kernel related to general kinds of nonlinear vibrations described by f-oscillators are considered.  相似文献   

18.
A periodic change of slow environmental parameters of a quantum system induces quantum holonomy. The phase holonomy is a well-known example. Another is a more exotic kind that exhibits eigenvalue and eigenspace holonomies. We introduce a theoretical formulation that describes the phase and eigenspace holonomies on an equal footing. The key concept of the theory is a gauge connection for an ordered basis, which is conceptually distinct from Mead-Truhlar-Berry’s connection and its Wilczek-Zee extension. A gauge invariant treatment of eigenspace holonomy based on Fujikawa’s formalism is developed. Example of adiabatic quantum holonomy, including the exotic kind with spectral degeneracy, are shown.  相似文献   

19.
We propose and test a renormalization procedure which acts in Hilbert space. We test its efficiency on strongly correlated quantum spin systems by working out and analyzing the low-energy spectral properties of frustrated quantum spin systems in different parts of the phase diagram and in the neighbourhood of quantum critical points.  相似文献   

20.
The motion of a point object through a viscous field is considered. The friction is assumed to depend quadratically on velocity of the particle. The inverse problem of the variational calculus is solved and the Weyl quantization procedure is employed to write a Schrödinger equation. The solution of this equation shows that the quantum mechanical wave function is oscillatory for small values of the friction. Contrarily, for large values of the friction, the wave function resembles the solution of von Neumann shock problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号