首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We formalize Jamiolkowski’s correspondence between quantum states and quantum operations isometrically, and harness its consequences. This correspondence was already implicit in Choi’s proof of the operator sum representation of Completely Positive-preserving linear maps; we go further and show that all of the important theorems concerning quantum operations can be derived directly from those concerning quantum states. As we do so the discussion first provides an elegant and original review of the main features of quantum operations. Next (in the second half of the paper) we find more results stemming from our formulation of the correspondence. Thus, we provide a factorizability condition for quantum operations, and give two novel Schmidt-type decompositions of bipartite pure states. By translating the composition law of quantum operations, we define a group structure upon the set of totally entangled states. The question whether the correspondence is merely mathematical or can be given a physical interpretation is addressed throughout the text: we provide formulae which suggest quantum states inherently define a quantum operation between two of their subsystems, and which turn out to have applications in quantum cryptography.  相似文献   

2.
Triangular anisotropic Heisenberg antiferromagnet shares with the triangular planar antiferromagnet the rich phenomenology found in presence of an external magnetic field. The physical interest in the triangular Heisenberg model is obvious because the planar model has not the quantum analogous one and, more seriously, it does not allow out-of-plane fluctuations so that it provides a very rough representation of actual magnetic insulators. Indeed, we show that magnetic resonance data on CsCuCl3 are satisfactorily understood on the basis of the properties of the quantum triangular Heisenberg antiferromagnet with easy-plane exchange anisotropy.  相似文献   

3.
The paper concerns integral quantization, a procedure based on operator-valued measure and resolution of the identity. We insist on covariance properties in the important case where group representation theory is involved. We also insist on the inherent probabilistic aspects of this classical–quantum map. The approach includes and generalizes coherent state quantization. Two applications based on group representation are carried out. The first one concerns the Weyl–Heisenberg group and the euclidean plane viewed as the corresponding phase space. We show that a world of quantizations exist, which yield the canonical commutation rule and the usual quantum spectrum of the harmonic oscillator. The second one concerns the affine group of the real line and gives rise to an interesting regularization of the dilation origin in the half-plane viewed as the corresponding phase space.  相似文献   

4.
Following Dirac’s assertion: “… for a quantum dynamic system that has a classical analogue, unitary transformation in the quantum theory is the analogue of contact transformation in the classical theory”, we find that the general SU(1, 1) single-mode squeezing operator F just corresponds to the generalized Fresnel transform (GFT) in wave optics. We derive the normal product form and canonical coherent state representation of F, whose matrix element in the coordinate representation is just the GFT. It is shown that F is a faithful representation of symplectic group which indicates that two successive GFTs is still a GFT. Applications of F in some other optical transforms, such as the Fresnel-wavelet transform, are presented.  相似文献   

5.
Fluctuation of Mesoscopic RLC Circuit at Finite Temperature   总被引:1,自引:0,他引:1       下载免费PDF全文
We consider the fluctuation of mesoscopic RLC circuit at finite temperature since a resistance always produces Joule heat when the circuit is working. By virtue of the thermo field dynamics and the coherent thermo state representation we show that the quantum mechanical zero-point fluctuations of both charge and current increase with the rising temperature and the resistance value.  相似文献   

6.
Corresponding to the Fresnel transform there exists a unitary operator in quantum optics theory, which could be known the Fresnel operator (FO). We show that the multiplication rule of the FO naturally leads to the quantum optical ABCD law. The canonical operator methods as mapping of ray-transferABCD matrix is explicitly shown by the normally ordered expansion of the FO through the coherent state representation and the technique of integration within an ordered product of operators. We show that time evolution of the damping oscillator embodies the quantum optical ABCD law.  相似文献   

7.
In this paper, we propose a novel quantum secret image-sharing scheme which constructs m quantum secret images into m+1 quantum share images. A chaotic image generated by the logistic map is utilized to assist in the construction of quantum share images first. The chaotic image and secret images are expressed as quantum image representation by using the novel enhanced quantum representation. To enhance the confidentiality, quantum secret images are scrambled into disordered images through the Arnold transform. Then the quantum share images are constructed by performing a series of quantum swap operations and quantum controlled-NOT operations. Because all quantum operations are invertible, the original quantum secret images can be reconstructed by performing a series of inverse operations. Theoretical analysis and numerical simulation proved both the security and low computational complexity of the scheme, which has outperformed its classical counterparts. It also provides quantum circuits for sharing and recovery processes.  相似文献   

8.
Quantum Hamiltonians that are fine-tuned to their so-called Rokhsar-Kivelson (RK) points, first presented in the context of quantum dimer models, are defined by their representations in preferred bases in which their ground state wave functions are intimately related to the partition functions of combinatorial problems of classical statistical physics. We show that all the known examples of quantum Hamiltonians, when fine-tuned to their RK points, belong to a larger class of real, symmetric, and irreducible matrices that admit what we dub a Stochastic Matrix Form (SMF) decomposition. Matrices that are SMF decomposable are shown to be in one-to-one correspondence with stochastic classical systems described by a Master equation of the matrix type, hence their name. It then follows that the equilibrium partition function of the stochastic classical system partly controls the zero-temperature quantum phase diagram, while the relaxation rates of the stochastic classical system coincide with the excitation spectrum of the quantum problem. Given a generic quantum Hamiltonian construed as an abstract operator defined on some Hilbert space, we prove that there exists a continuous manifold of bases in which the representation of the quantum Hamiltonian is SMF decomposable, i.e., there is a (continuous) manifold of distinct stochastic classical systems related to the same quantum problem. Finally, we illustrate with three examples of Hamiltonians fine-tuned to their RK points, the triangular quantum dimer model, the quantum eight-vertex model, and the quantum three-coloring model on the honeycomb lattice, how they can be understood within our framework, and how this allows for immediate generalizations, e.g., by adding non-trivial interactions to these models.  相似文献   

9.
We address the question of which phase space functionals might represent a quantum state. We derive necessary and sufficient conditions for both pure and mixed phase space quantum states. From the pure state quantum condition we obtain a formula for the momentum correlations of arbitrary order and derive explicit expressions for the wave functions in terms of time-dependent and independent Wigner functions. We show that the pure state quantum condition is preserved by the Moyal (but not by the classical Liouville) time evolution and is consistent with a generic stargenvalue equation. As a by-product Baker's converse construction is generalized both to an arbitrary stargenvalue equation, associated to a generic phase space symbol, as well as to the time-dependent case. These results are properly extended to the mixed state quantum condition, which is proved to imply the Heisenberg uncertainty relations. Globally, this formalism yields the complete characterization of the kinematical structure of Wigner quantum mechanics. The previous results are then succinctly generalized for various quasi-distributions. Finally, the formalism is illustrated through the simple examples of the harmonic oscillator and the free Gaussian wave packet. As a by-product, we obtain in the former example an integral representation of the Hermite polynomials.  相似文献   

10.
In this paper we study the quantum phase transition and low temperature behavior in a square lattice quantum two-dimensional XY model with single-ion anisotropy and spin S=1. Starting with the Villain representation, a Landau-Ginzburg expression is written. The large D phase is studied using the bond operator formalism.  相似文献   

11.
An algebraic theory of dualities is developed based on the notion of bond algebras. It deals with classical and quantum dualities in a unified fashion explaining the precise connection between quantum dualities and the low temperature (strong-coupling)/high temperature (weak-coupling) dualities of classical statistical mechanics (or (Euclidean) path integrals). Its range of applications includes discrete lattice, continuum field and gauge theories. Dualities are revealed to be local, structure-preserving mappings between model-specific bond algebras that can be implemented as unitary transformations, or partial isometries if gauge symmetries are involved. This characterization permits us to search systematically for dualities and self-dualities in quantum models of arbitrary system size, dimensionality and complexity, and any classical model admitting a transfer matrix or operator representation. In particular, special dualities such as exact dimensional reduction, emergent and gauge-reducing dualities that solve gauge constraints can be easily understood in terms of mappings of bond algebras. As a new example, we show that the ?2 Higgs model is dual to the extended toric code model in any number of dimensions. Non-local transformations such as dual variables and Jordan–Wigner dictionaries are algorithmically derived from the local mappings of bond algebras. This permits us to establish a precise connection between quantum dual and classical disorder variables. Our bond-algebraic approach goes beyond the standard approach to classical dualities, and could help resolve the long-standing problem of obtaining duality transformations for lattice non-Abelian models. As an illustration, we present new dualities in any spatial dimension for the quantum Heisenberg model. Finally, we discuss various applications including location of phase boundaries, spectral behavior and, notably, we show how bond-algebraic dualities help constrain and realize fermionization in an arbitrary number of spatial dimensions.  相似文献   

12.
We investigate the transition to quantum chaos, induced by static imperfections, for an operating quantum computer that simulates efficiently a dynamical quantum system, the sawtooth map. For the different dynamical regimes of the map, we discuss the quantum chaos border induced by static imperfections by analyzing the statistical properties of the quantum computer eigenvalues. For small imperfection strengths the level spacing statistics is close to the case of quasi-integrable systems while above the border it is described by the random matrix theory. We have found that the border drops exponentially with the number of qubits, both in the ergodic and quasi-integrable dynamical regimes of the map characterized by a complex phase space structure. On the contrary, the regime with integrable map dynamics remains more stable against static imperfections since in this case the border drops only algebraically with the number of qubits. Received 19 June 2002 / Received in final form 30 September 2002 Published online 17 Decembre 2002 RID="a" ID="a"e-mail: dima@irsamc.ups-tlse.fr RID="b" ID="b"UMR 5626 du CNRS  相似文献   

13.
14.
We prove quantum ergodicity for a family of graphs that are obtained from ergodic one-dimensional maps of an interval using a procedure introduced by Pakónski et al (J. Phys. A, 34, 9303-9317 (2001)). As observables we take the L 2 functions on the interval. The proof is based on the periodic orbit expansion of a majorant of the quantum variance. Specifically, given a one-dimensional, Lebesgue-measure-preserving map of an interval, we consider an increasingly refined sequence of partitions of the interval. To this sequence we associate a sequence of graphs, whose directed edges correspond to elements of the partitions and on which the classical dynamics approximates the Perron-Frobenius operator corresponding to the map. We show that, except possibly for subsequences of density 0, the eigenstates of the quantum graphs equidistribute in the limit of large graphs. For a smaller class of observables we also show that the Egorov property, a correspondence between classical and quantum evolution in the semiclassical limit, holds for the quantum graphs in question.  相似文献   

15.
The development of technique of integration within an ordered product (IWOP) of operators extends the Newton-Leibniz integration rule, originally applying to permutable functions, to the non-commutative quantum mechanical operators composed of Dirac’s ket-bra, which enables us to obtain the images of directly mapping symplectic transformation in classical phase space parameterized by [AB; CD] into quantum mechanical operator through the coherent state representation, we call them the generalized Fresnel operators (GFO) since they correspond to Fresnel transforms in Fourier optics. Based on GFO we find the ABCD rule for Gaussian beam propagation in the context of quantum optics (both in one-mode and two-mode cases) whose classical correspondence is just the ABCD rule in matrix optics. The entangled state representation is used in discussing the two-mode case.  相似文献   

16.
I investigate the propagator of the Wigner function for a dissipative chaotic quantum map. I show that a small amount of dissipation reduces the propagator of sufficiently smooth Wigner functions to its classical counterpart, the Frobenius-Perron operator, if . Several consequences arise: the Wigner transform of the invariant density matrix is a smeared out version of the classical strange attractor; time dependent expectation values and correlation functions of observables can be evaluated via hybrid quantum-classical formulae in which the quantum character enters only via the initial Wigner function. If a classical phase-space distribution is chosen for the latter or if the map is iterated sufficiently many times the formulae become entirely classical, and powerful classical trace formulae apply. Received 7 October 1999  相似文献   

17.
Examples of repeatable procedures and maps are found in the open quantum dynamics of one qubit that interacts with another qubit. They show that a mathematical map that is repeatable can be made by a physical procedure that is not.  相似文献   

18.
We review the entanglement degradation in open quantum systems in the Choi–Jamio?kowski representation of linear maps. In addition to physical processes of entanglement dissociation and entanglement annihilation, we consider quantum dynamics transforming arbitrary input states into those that remain positive under partial transpose (PPT-inducing channels). Such evolutions form a convex subset of distillation-prohibiting channels. We clarify the relation between the above channels and entanglement-binding channels. We give an example of the distillation-prohibiting map Φ ? Φ, where Φ is not entanglement binding.  相似文献   

19.
Loop quantum gravity is an approach to quantum gravity that starts from the Hamiltonian formulation in terms of a connection and its canonical conjugate. Quantization proceeds in the spirit of Dirac: First one defines an algebra of basic kinematical observables and represents it through operators on a suitable Hilbert space. In a second step, one implements the constraints. The main result of the paper concerns the representation theory of the kinematical algebra: We show that there is only one cyclic representation invariant under spatial diffeomorphisms.While this result is particularly important for loop quantum gravity, we are rather general: The precise definition of the abstract *-algebra of the basic kinematical observables we give could be used for any theory in which the configuration variable is a connection with a compact structure group. The variables are constructed from the holonomy map and from the fluxes of the momentum conjugate to the connection. The uniqueness result is relevant for any such theory invariant under spatial diffeomorphisms or being a part of a diffeomorphism invariant theory.  相似文献   

20.
Fractional derivative can be defined as a fractional power of derivative. The commutator (i/?)[H,⋅], which is used in the Heisenberg equation, is a derivation on a set of observables. A derivation is a map that satisfies the Leibnitz rule. In this Letter, we consider a fractional derivative on a set of quantum observables as a fractional power of the commutator (i/?)[H,⋅]. As a result, we obtain a fractional generalization of the Heisenberg equation. The fractional Heisenberg equation is exactly solved for the Hamiltonians of free particle and harmonic oscillator. The suggested Heisenberg equation generalize a notion of quantum Hamiltonian systems to describe quantum dissipative processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号