首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The formation of disulfide-bonds is vital for the proper folding of most secreted proteins and the stabilization of the final protein structure, including many of medical importance. The determination of disulfide-bonds is an important aspect of gaining a comprehensive understanding of the chemical structure of a protein. A long-term goal of ours is to examine the mechanism of disulfide-bond formation in aqueous solution and the potential role hydrogen bonds play in this process. Here, we report preliminary results from a method that utilizes the oxidizing power of iodine to generate disulfide bonds from synthesized model compounds, which is followed by nanoelectrospray ionization (nanoESI)- mass spectrometry (MS). By continuously monitoring the reaction mixture during disulfide formation, this nanoESI approach provides insight on the sequence of intermediate species formed, and how hydrogen-bonding donor/acceptor pairs may promote disulfide bond formation.  相似文献   

2.
Coldspray ionization (CSI) mass spectrometry, a variant of electrospray ionization (ESI) operating at low temperature (20 to −80°C), has been used to characterize protein conformation and noncovalent complexes. A comparison of CSI and ESI was presented for the investigation of the equilibrium acid-induced unfolding of cytochrome c, ubiquitin, myoglobin, and cyclophilin A (CypA) over a wide range of pH values in aqueous solutions. CSI and nanoelectrospray ionization (nanoESI) were also compared in their performance to characterize the conformational changes of cytochrome c and myoglobin. Significant differences were observed, with narrower charged-state distribution and a shift to lower charge state in the CSI mass spectra compared with those in ESI and nanoESI mass spectra. The results suggest that CSI is more prone to preserving folded protein conformations in solution than the ESI and nanoESI methods. Moreover, the CSI-MS data are comparable with those obtained by other established biophysical methods, which are generally acknowledged to be the suitable techniques for monitoring protein conformation in solution. Noncovalent complexes of holomyoglobin and the protein-ligand complex between CypA and cyclosporin A (CsA) were also investigated at a neutral pH using the CSI-MS method. The results of this study suggest the ability of CSI-MS in retaining of protein conformation and noncovalent interactions in solution and probing subtle protein conformational changes. Additionally, the CSI-MS method is capable of analyzing quantitatively equilibrium unfolding transitions of proteins. CSI-MS may become one of the promising techniques for investigating protein conformation and noncovalent protein-ligand interactions in solution.  相似文献   

3.
While the bottom-up protein analysis serves as a mainstream method for biological studies, its efficiency is limited by the time-consuming process for enzymatic digestion or hydrolysis as well as the post-digestion treatment prior to mass spectrometry analysis. In this work, we developed an enzyme-free microreaction system for fast and selective hydrolysis of proteins, and a direct analysis of the protein digests was achieved by nanoESI (electrospray ionization) mass spectrometry. Using the microreactor, proteins in aqueous solution could be selectively hydrolyzed at the aspartyl sites within 2 min at high temperatures (∼150 °C). Being free of salts, the protein digest solution could be directly analyzed using a mass spectrometer with nanoESI without further purification or post-digestion treatment. This method has been validated for the analysis of a variety of proteins with molecular weights ranging from 8.5 to 67 kDa. With introduction of a reducing agent into the protein solutions, fast cleavage of disulfide bonds was also achieved along with high-temperature hydrolysis, allowing for fast analysis of large proteins such as bovine serum albumin. The high-temperature microreaction system was also used with a miniature mass spectrometer for the determination of highly specific peptides from Mycobacterium tuberculosis antigens, showing its potential for point-of-care analysis of protein biomarkers.

A high-temperature microreaction system is developed for fast and selective hydrolysis of proteins, enabling direct analysis of protein biomarkers by mass spectrometry.  相似文献   

4.
A variety of carbohydrates, in particular polysaccharides can be subjected to chemical modification to obtain derivatives with amphiphilic properties, which enable biochemical or biological reactions at the polymer surface. In the present work, a polydisperse maltodextrin mixture of average molecular weight 3000 was coupled with 1,6-hexamethylenediamine (HMD) via reductive amination reaction. Resulting products were characterized by thermal analysis and positive nanoelectrospray quadrupole time-of-flight (Q-TOF) mass spectrometry (MS) and tandem mass spectrometry (MS/MS). Both thermal analysis and MS screening confirmed the formation of the HMD-polysaccharide coupling products. Moreover, HMD-linked polysaccharide chains containing 2 to 26 glucose building blocks were identified by nanoESI Q-TOF MS. MS/MS fragmentation using collision-induced dissociation (CID) at low ion acceleration energies provided strong evidence for HMD-maltodextrin linkage formation and the set of sequence ions diagnostic for the composition and structure of a HMD-linked chain containing 18 glucose residues.   相似文献   

5.
Many chemical and biochemical reactions equilibrate within a few seconds of initiation under "native" conditions. To understand the microscopic processes underlying these reactions, the most direct approach is to monitor the reaction as equilibrium is established (i.e. the reaction kinetics). However, this requires the ability to characterize the reaction mixture on the millisecond time-scale. In this review, we survey the contributions of time-resolved mass spectrometry (TR-MS) to the characterization of millisecond time-scale (bio)chemical processes, with a focus on biochemical applications. Compared to conventional time-resolved techniques, which use optical detection, the primary advantage of TR-MS is the ability to detect virtually all reactive species simultaneously. This provides a singularly high detail account of the reaction without the need for a chromophoric change on turnover or artificial chromophoric probes. To provide millisecond time-resolution, TR-MS set-ups usually employ continuous-flow rapid mixers, corresponding either to a fixed "tee" that provides a single reaction time-point or an adjustable position mixer that allows continuous reaction monitoring. TR-MS has been used to monitor processes with rates up to 500 s(-1) and to provide a detailed account of complex reactions involving 10 co- populated species. This corresponds to significantly lower time-resolution than optical methods, which can measure rates in excess of 900 s(-1) under ideal conditions, but substantially more detail (optical studies are typically limited to one or two analytes). TR-MS has been implemented on a number of platforms, including capillary and microfluidic set-ups. Capillary-based implementations are straightforward to fabricate and provide the most efficient rapid mixing. Microfluidic implementations have also been devised to enable multi-step experimental workflows that incorporate TR-MS. As a general method for time-resolved measurements, the applications for TR-MS are wide ranging. TR-MS has been used to identify intermediates in organic reactions, reveal protein (un)folding mechanisms, monitor enzyme catalysis in the pre-steady-state and, in conjunction with hydrogen-deuterium exchange, characterize protein conformational dynamics. While not without limitations, TR-MS represents a powerful alternative for measuring solution phase processes on the millisecond time-scale and a new, promising approach for revealing mechanistic details in (bio)chemical reactions.  相似文献   

6.
In the present study, reactions of sodium nitrite with proteins/peptides were characterized with mass spectrometry. The reaction generates two major products: replacement of the amino group by a hydroxyl group and formation of an alkene derivative by loss of a NH3 group at the N-terminus and the side chain of lysine residues of proteins/peptides. The reaction proceeds rapidly in weak acidic solution and at 37 degrees C in the presence of a millimolar concentration of nitrite, demonstrating that nitrite induces nitrosative deamination in proteins and peptides. The facile nitrite-induced modification of amino groups of protein/peptides changes the chemical nature of proteins and may have various applications in peptide synthesis, analytical chemistry, and protein engineering. It also provides information to enhance our understanding of functions of nitrite ions in biology and food preservation.  相似文献   

7.
A new selective bioconjugation reaction is described for the modification of tyrosine residues on protein substrates. The reaction uses imines formed in situ from aldehydes and electron-rich anilines to modify phenolic side chains through a Mannich-type electrophilic aromatic substitution pathway. The reaction takes place under mild pH and temperature conditions and can modify protein substrates at concentrations as low as 20 muM. Using an efficient fluorescence-based assay, we demonstrated the reaction using a number of aldehydes and protein targets. Importantly, proteins lacking surface-accessible tyrosines remained unmodified. It was also demonstrated that enzymatic activity is preserved under the mild reaction conditions. This strategy represents one of the first carbon-carbon bond-forming reactions for protein modification and provides an important complement to more commonly used lysine- and cysteine-based methods.  相似文献   

8.
High-throughput screening for optimal reaction conditions and the search for efficient catalysts is of eminent importance in the development of chemical processes and for expanding the spectrum of synthetic methodologies in chemistry. In this context we report a novel approach for a microfluidic chemical laboratory integrating organic synthesis, separation and time-resolved fluorescence detection on a single microchip. The feasibility of our integrated laboratory is demonstrated by monitoring the formation of tetrahydroisoquinoline derivatives by Pictet-Spengler condensation. After on-chip reaction the products and residual starting material were separated enantioselectively on the same chip. On-chip deep UV laser-induced fluorescence detection with time-correlated single photon counting was applied for compound assignment. The system was utilized to screen reaction conditions and various substrates for Pictet-Spengler reactions on-chip. Finally, the microlab was successfully applied to investigate enantioselective reactions using BINOL-based phosphoric acids as organocatalysts.  相似文献   

9.
The mathematical model of mass transport for linear sweep voltammetry under hydro-dynamic conditions at tubular electrodes has been studied for ECE processes in which an irreversible chemical reaction is coupled between two reversible charge transfer reactions. The resulting boundary value problem is converted into system of two integral equations, which is solved numerically. The effects of axial flow rate, scan rate, potential difference, variation of chemical reaction rate and the effect of the ratio of number of electrons (n 2/n 1) involved in two charge transfer reactions on CV-voltammograms are investigated and shown graphically.  相似文献   

10.
In biological systems, carbon-centered small molecule radicals are primarily formed via external radiation or internal radical reactions. These radical species can react with a variety of biomolecules, most notably nucleic acids, the consequence of which has possible links to gene mutation and cancer. Sulfur-containing peptides and proteins are reactive toward a variety of radical species and many of them behave as radical scavengers. In this study, the reactions between alkyl alcohol carbon-centered radicals (e.g., ?CH2OH for methanol) and cysteinyl peptides within a nanoelectrospray ionization (nanoESI) plume were explored. The reaction system involved ultraviolet (UV) irradiation of a nanoESI plume using a low pressure mercury lamp consisting of 185 and 254 nm emission bands. The alkyl alcohol was added as solvent into the nanoESI solution and served as the precursor of hydroxyalkyl radicals upon UV irradiation. The hydroxyalkyl radicals subsequently reacted with cysteinyl peptides either containing a disulfide linkage or free thiol, which led to the formation of peptide-S-hydroxyalkyl product. This radical reaction coupled with subsequent MS/MS was shown to have analytical potential by cleaving intrachain disulfide linked peptides prior to CID to enhance sequence information. Tandem mass spectrometry via collision-induced dissociation (CID), stable isotope labeling, and accurate mass measurement were employed to verify the identities of the reaction products.
Figure
?  相似文献   

11.
Protein citrullination originates from enzymatic deimination of polypeptide‐bound arginine and is involved in various biological processes during health and disease. However, tools required for a detailed and targeted proteomic analysis of citrullinated proteins in situ, including their citrullination sites, are limited. A widely used technique for detection of citrullinated proteins relies on antibody staining after specific derivatization of citrulline residues by 2,3‐butanedione and antipyrine. We have recently reported on the details of this reaction. Here, we show that this chemical modification can be utilized to specifically detect and identify citrullinated peptides and their citrullination sites by liquid chromatography/tandem mass spectrometry (LC/MS/MS) analysis. Using model compounds, we demonstrate that in collision‐induced dissociation (CID) a specific, modification‐derived fragment ion appears as the dominating signal at m/z 201.1 in the MS/MS spectra. When applying electron transfer dissociation (ETD), however, the chemical modification of citrulline remained intact and extensive sequence coverage allowed identification of peptides and their citrullination sites. Therefore, LC/MS/MS analysis with alternating CID and ETD has been performed, using CID for specific, signature ion‐based detection of derivatized citrullinated peptides and ETD for sequence determination. The usefulness of this targeted analysis was demonstrated by identifying citrullination sites in myelin basic protein deiminated in vitro. Combining antibody‐based enrichment of chemically modified citrulline‐containing peptides with specific mass spectrometric detection will increase the potential of such a targeted analysis of protein citrullination in the future. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Probe electrospray ionization (PESI) is a modified version of the electrospray ionization (ESI), where the capillary for sampling and spraying is replaced by a solid needle. High tolerance to salts and direct ambient sampling are major advantages of PESI compared with conventional ESI. In this study, PESI‐MS was used to monitor some biological and chemical reactions in real‐time, such as acid‐induced protein denaturation, hydrogen/deuterium exchange (HDX) of peptides, and Schiff base formation. By using PESI‐MS, time‐resolved mass spectra and ion chromatograms can be obtained reproducibly. Real‐time PESI‐MS monitoring can give direct and detailed information on each chemical species taking part in reactions, and this is valuable for a better understanding of the whole reaction process and for the optimization of reaction parameters. PESI‐MS can be considered as a potential tool for real‐time reaction monitoring due to its simplicity in instrumental setup, direct sampling with minimum sample preparation and low sample consumption. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
Ambient ionization mass spectrometry: a tutorial   总被引:4,自引:0,他引:4  
Ambient ionization is a set of mass spectrometric ionization techniques performed under ambient conditions that allows the direct analysis of sample surfaces with little or no sample pretreatment. Using combinations of different types of sample introduction systems and ionization methods, several novel techniques have been developed over the last few years with many applications (e.g., food safety screening; detection of pharmaceuticals and drug abuse; monitoring of environmental pollutants; detection of explosives for antiterrorism and forensics; characterization of biological compounds for proteomics and metabolomics; molecular imaging analysis; and monitoring chemical and biochemical reactions). Electrospray ionization and atmospheric pressure chemical ionization are the two main ionization principles most commonly used in ambient ionization mass spectrometry. This tutorial paper provides a review of the publications related to ambient ionization techniques. We describe and compare the underlying principles of operation, ionization processes, detecting mass ranges, sensitivity, and representative applications of these techniques.  相似文献   

14.
We describe a method for probing surface‐exposed cysteines in proteins by selective labeling with p‐hydroxymercuribenzoate (PMB) combined with nano‐electrospray ionization mass spectrometric analysis (nanoESI‐MS). The rapid, stoichiometric, and specific labeling by PMB of surface‐exposed cysteines allows for characterization of the accessibility of the cysteines using a single MS analysis. Moreover, by taking advantage of the large mass shift of 321 Da, unique isotopic pattern, and enhanced MS signal of PMB‐labeled cysteine‐containing peptide fragments, the surface‐exposed cysteines in proteins can be accurately identified by peptide mapping. The number and sites of reactive cysteines on the surface of human and rat hemoglobins (hHb and rHb) were identified as examples. Collision‐induced dissociation tandem mass spectrometric (MS/MS) analysis of specific peptides further confirmed the selective labeling of PMB in hHb. The subtle difference between the different cysteine residues in rHb was also evaluated by multiple PMB titrations. The difference between the two cysteines in their environment may partially explain their reaction specificity. Cysteine 125 in the β unit of rHb is exposed on the surface, explaining its reactivity with glutathione. Cysteine 13 in the α subunit of rHb is much less exposed, and is located in a hydrophobic pocket, a conclusion that is consistent with the previous observation of its selective binding with dimethylarsinous acid, a reactive arsenic metabolite. The method is potentially useful for probing cysteines in other biologically important proteins and for studying proteins that are associated with conformational or structural changes induced by denaturing processes, protein modifications, protein‐protein interactions and protein assemblies. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
This new method overcomes problems of conventional analytical methodologies such as light scattering and sampling reproducibility issues. We used this method for mechanistic studies of catalytic reactions under heterogeneous conditions. Direct-type hydroxymethylation reactions and Mukaiyama-type hydroxymethylation reactions both catalyzed by a scandium–bipyridine ligand complex under micellar conditions were employed as examples of heterogeneous reactions. For direct-type hydroxymethylation reactions, initial reaction rate assays revealed first-order dependency on both substrate and catalyst. On the other hand, Mukaiyama-type hydroxymethylation reactions showed first-order rate dependency on substrate, zero-order on catalyst and saturation kinetics on formaldehyde.

A direct and quantitative method for monitoring heterogeneous organic reactions has been developed by using direct analysis in real time mass spectrometry (DART-MS) with an isotope-labeled reaction product as an internal standard.  相似文献   

16.
Three recurring hypotheses are often used to explain the effect of non‐thermal plasmas (NTPs) on NTP catalytic hybrid reactions; namely, modification or heating of the catalyst or creation of new reaction pathways by plasma‐produced species. NTP‐assisted methane (CH4) oxidation over Pd/Al2O3 was investigated by direct monitoring of the X‐ray absorption fine structure of the catalyst, coupled with end‐of‐pipe mass spectrometry. This in situ study revealed that the catalyst did not undergo any significant structural changes under NTP conditions. However, the NTP did lead to an increase in the temperature of the Pd nanoparticles; although this temperature rise was insufficient to activate the thermal CH4 oxidation reaction. The contribution of a lower activation barrier alternative reaction pathway involving the formation of CH3(g) from electron impact reactions is proposed.  相似文献   

17.
The separation of intact proteins is inherently more complex than that of small molecules using reversed‐phase liquid chromatography. The goal of this work was to determine a reasonable set of operational parameters (a recommended starting point for other analysts) for the separation of intact proteins and their detection by triple quadrupole mass spectrometry. Although protein separations have been studied for many years, the direct detection of intact proteins with mass spectrometry requires special considerations of mobile phase additives to achieve efficient separation and sensitive detection. Myoglobin, cytochrome c, lactalbumin, lysozyme, and ubiquitin were used as model analytes to investigate chromatographic method development using a triple quadrupole mass spectrometer and detection by multiple reaction monitoring. Chromatographic parameters including the concentration of trifluoroacetic acid, flow rate, gradient slope, temperature, mobile phase composition, and stationary phase chemistry were evaluated. Protein charge state profiles were also monitored for temperature and modifier effects. An optimized method using 0.2 mL/min flow rate, 15% gradient slope, and 75°C with a combined trifluoroacetic acid and formic acid modified mobile phase was developed.  相似文献   

18.
Guanidination of the epsilon-amino group of lysine-terminated tryptic peptides can be accomplished selectively in one step with O-methylisourea hydrogen sulfate. This reaction converts lysine residues into more basic homoarginine residues. It also protects the epsilon-amino groups against unwanted reaction with sulfonation reagents, which can then be used to selectively modify the N-termini of tryptic peptides. The combined reactions convert lysine-terminated tryptic peptides into modified peptides that are suitable for de novo sequencing by postsource decay matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. The guanidination reaction is very pH dependent. Product yields and reaction kinetics were studied in aqueous solution using either NaOH or diisopropylethylamine as the base. Methods are reported for derivatizing and sequencing lysine-terminated tryptic peptides at low pmole levels. The postsource decay (PSD) MALDI tandem mass spectra of a model peptide (VGGYGYGAK), the homoarginine analog and the sulfonated homoarginine analog are compared. These spectra show the influence that each chemical modification has on the peptide fragmentation pattern. Finally, we demonstrate that definitive protein identifications can be achieved by PSD MALDI sequencing of derivatized peptides obtained from solution digests of model proteins and from in-gel digests of 2D-gel separated proteins.  相似文献   

19.
Lysine acylation of proteins is an essential chemical reaction for posttranslational modification and as a means of protein modification in various applications. N,N‐Dimethyl‐4‐aminopyridine (DMAP) derivatives are widely‐used catalysts for lysine acylation of proteins; however, the DMAP moiety mostly exists in a protonated, and thus deactivated, form under physiological conditions due to its basicity. An alternative catalytic motif furnishing higher acylation activity would further broaden the possible applications of chemical lysine acylation. We herein report that the hydroxamic acid‐piperidine conjugate Ph‐HXA is a more active catalytic motif for lysine acetylation than DMAP under physiological conditions. In contrast to DMAP, the hydroxamic acid moiety is mostly deprotonated under aqueous neutral pH, resulting in a higher concentration of the activated form. The Ph‐HXA catalyst is also more tolerant of deactivation by a high concentration of glutathione than DMAP. Therefore, Ph‐HXA might be a suitable catalytic motif for target protein‐selective and site‐selective acetylation in cells.  相似文献   

20.
Site-specific chemical modification is a useful technology in characterisation of proteins, but the number of chemical probes of the protein structure reacting with proteins under mild conditions in aqueous solutions is rather limited. Here we studied the reaction of osmium tetroxide, 2,2′-bipyridine (Os,bipy) with several peptides using capillary zone electrophoresis (CZE) and matrix-assisted laser desorption-ionisation-time-of-flight mass spectrometry (MALDI-TOF MS). Both techniques showed formation of a stable complex of Os,bipy with tryptophan residues. In CZE peaks with different migration times and UV-Vis spectra were observed. MALDI-TOF MS showed the formation of a product with characteristic isotopic pattern corresponding to the presence of osmium atom. Oxidation of cysteine and methionine side chains to cysteic acid and methionine sulfone by Os,bipy was detected by CZE and confirmed by MALDI-TOF and post-source decay (PSD) mass spectra. PSD showed specific shifts of molecular weights of the peptides and their fragments after the derivatisation. We believe that Os,bipy may become a useful agent in the characterisation of proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号