首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Lang Q  Kwang Yak H  Wai CM 《Talanta》2001,54(4):673-680
Under ultrasonication, the ginkgo terpene trilactones, ginkgolides and bilobalide, in ginkgo extracts can be selectively dissolved in 10% aqueous NaH(2)PO(4) solution at a temperature of 50-60 degrees C and separated from the solution by extraction with a mixture of ethyl acetate/tetrahydrofuran in a capped vial. After derivatization, these terpene trilactones can be quantified using GC-FID. This method has a detection limit of 10 ng, and the RSD was 6% (n=5). Twelve commercial GBE products in powder, liquid, tablet and capsule forms were analyzed. The total time required for analyzing these samples from sample preparation to final data processing was less than 6 h, and the total organic solvent consumption was less than 40 ml. This procedure proves to be a simple, fast, safe, and effective method for all types of Ginkgo biloba extracts (GBE) including the "complex" or "advanced" formulas.  相似文献   

2.
Preparative isolation of terpene trilactones from Ginkgo biloba leaves   总被引:1,自引:0,他引:1  
This study investigated and compared some techniques for the preparative isolation of terpene trilactones, including ginkgolides (GA and GB, etc.) and bilobalide (BB), from Ginkgo biloba leaves. The crude Ginkgo biloba L. extracts (GBE) were prepared using an extractor with solvent refluxing operated under an optimal extraction condition. The extraction yield was 20-23% and the purity of terpene trilactones was about 1.0-1.4 wt%. Before the isolation operations, the extracts were dissolved in de-ionized water. The isolation procedures included the method of liquid-liquid extraction and the method of column chromatography. For the method of liquid-liquid extraction using ethyl acetate as the organic solvent operated under the optimal extraction conditions, the purity, concentration ratio, and yield of terpene trilactones were 13.5-18.0%, 15-16, and >99%. For the method of column chromatography, XAD-7HP, XAD-4, and C-18 adsorbents with different polarities were used as the packing materials. Only for the XAD-7HP column, a part of more polar impurities was efficiently separated with the majority of terpene trilactones by a proper step-gradient elution, which resulted in an efficient isolation: the purity, concentration ratio, and yield of terpene trilactones were approximately 20, approximately 15, and approximately 80%. In comparison, the XAD-7HP column achieved the highest purity, but at the expense of the yield of terpene trilactones; on the contrary, the liquid-liquid extraction method, achieving the highest yield but with a slightly lower purity, was proved to be superior to the method of column chromatography in the current isolation stage.  相似文献   

3.
The chemical analysis and quality control of Ginkgo leaves, extracts, phytopharmaceuticals and some herbal supplements is comprehensively reviewed. The review is an update of a similar, earlier review in this journal [T.A. van Beek, J. Chromatogr. A 967 (2002) 21–55]. Since 2001 over 3000 papers on Ginkgo biloba have appeared, and about 400 of them pertain to chemical analysis in a broad sense and are cited herein. The more important ones are discussed and, where relevant, compared with the best methods published prior to 2002. In the same period over 2500 patents were filed on Ginkgo and the very few related to analysis are mentioned as well. Important constituents include terpene trilactones, i.e. ginkgolide A, B, C, J and bilobalide, flavonol glycosides, biflavones, proanthocyanidins, alkylphenols, simple phenolic acids, 6-hydroxykynurenic acid, 4-O-methylpyridoxine and polyprenols. In the most common so-called “standardised” Ginkgo extracts and phytopharmaceuticals several of these classes are no longer present. About 130 new papers deal with the analysis of the terpene trilactones. They are mostly extracted with methanol or water or mixtures thereof. Supercritical fluid extraction and pressurised water extraction are also possible. Sample clean-up is mostly by liquid–liquid extraction with ethyl acetate although no sample clean-up at all in combination with LC/MS/MS is gaining in importance. Separation and detection can be routinely carried out by RP-HPLC with ELSD, RI or MS, or by GC/FID or GC/MS after silylation. Hydrolysis followed by LC/MS allows the simultaneous analysis of terpene trilactones and flavonol aglycones. No quantitative procedure for all major flavonol glycosides has yet been published because they are not commercially available. The quantitation of a few available glycosides has been carried out but does not serve a real purpose. After acidic hydrolysis to the aglycones quercetin, kaempferol and isorhamnetin and separation by HPLC, quantitation is straightforward and yields by recalculation an estimation of the original total flavonol glycoside content. A profile of the genuine flavonol glycosides can detect poor storage or adulteration. Although the toxicity of Ginkgo alkylphenols upon oral administration has never been undoubtedly proven, most suppliers limit their content in extracts to 5 ppm and dozens of papers on their analysis were published. One procedure in which a methanolic extract is directly injected on a C8 HPLC column appears superior in terms of sensitivity (<5 ppm), separation, simplicity and validation and will be incorporated in the European Pharmacopoeia. Alternatively GC/MS and ELISA methods can be used. A sharp contrast to the plethora of papers on terpene trilactones, flavonol glycosides, and ginkgolic acids forms the low number of papers on biflavones, proanthocyanidins, simple phenolics, simple acids, and other constituents that make up the remaining 70% of Ginkgo standardised extracts. More research in this direction is clearly needed. For the analysis of Ginkgo proanthocyanidins (7%) for instance, no reliable assays are yet existing. Finally the growing literature on pharmacokinetic and fingerprinting studies of Ginkgo is briefly summarised.  相似文献   

4.
Chemistry and biology of terpene trilactones from Ginkgo biloba   总被引:3,自引:0,他引:3  
Ginkgo biloba, the ginkgo tree, is the oldest living tree, with a long history of use in traditional Chinese medicine. In recent years, the leaf extracts have been widely sold as phytomedicine in Europe and as a dietary supplement worldwide. Effects of Ginkgo biloba extracts have been postulated to include improvement of memory, increased blood circulation, as well as beneficial effects to sufferers of Alzheimer's disease. The most unique components of the extracts are the terpene trilactones, that is, ginkgolides and bilobalide. These structurally complex molecules have been attractive targets for total synthesis. Terpene trilactones are believed to be partly responsible for the neuromodulatory properties of Ginkgo biloba extracts, and several biological effects of the terpene trilactones have been discovered in recent years, making them attractive pharmacological tools that could provide insight into the effects of Ginkgo biloba extracts.  相似文献   

5.
Chemical analysis of Ginkgo biloba leaves and extracts   总被引:23,自引:0,他引:23  
The chemical analysis and quality control of Ginkgo leaves and extracts is reviewed. Important constituents present in the medicinally used leaves are the terpene trilactones, i.e., ginkgolides A, B, C, J and bilobalide, many flavonol glycosides, biflavones, proanthocyanidins, alkylphenols, simple phenolic acids, 6-hydroxykynurenic acid, 4-O-methylpyridoxine and polyprenols. In the commercially important Ginkgo extracts some of these compound classes are no longer present. Many publications deal with the analysis of the unique terpene trilactones. They can be extracted with aqueous acetone or aqueous methanol but also supercritical fluid extraction is possible. Still somewhat problematic is their sample clean-up. Various procedures, not all of them validated, employing partitioning or SPE have been proposed. Some further development in this area can be foreseen. Separation and detection can be routinely carried out by HPLC with RI, ELSD or MS, or with GC-FID after silylation. TLC is another possibility. No quantitative procedure for flavonol glycosides has been published so far due their difficult separation and commercial unavailability. Fingerprint analysis by gradient RP-HPLC is possible. After acidic hydrolysis to the aglycones quercetin, kaempferol and isorhamnetin and separation by HPLC, quantitation is straightforward and yields by recalculation an estimation of the original total flavonol glycoside content. For biflavones, simple phenols, 6-hydroxykynurenic acid, 4-O-methylpyridoxine and polyprenols analytical procedures have been published but not all assays are yet ideal. Lately a there is a lot of interest in the analysis of the undesired alkylphenols and a few validated procedures have been published. The analysis of Ginkgo proanthocyanidins is still in its infancy and no reliable assays exist.  相似文献   

6.
Hot water extracts of Ginkgo biloba seeds were analyzed for the presence of ginkgotoxin (4'-O-methylpyridoxine) by reversed-phase liquid chromatography (LC) using methanol-0.05M KH2PO4 (1 + 9, v/v) adjusted to pH 3 as mobile phase. Detection was by fluorescence (excitation 280 nm, emission 370 nm). A straight line calibration curve was obtained for the 10-100 ng injected. After addition of beta-glucosidase (37 degrees C/h), an earlier eluting peak disappeared and the ginkgotoxin peak increased. The identity of the ginkgotoxin was confirmed by LC/MS and LC/MS/MS. LC/MS/MS also confirmed the 5'-glucoside by comparison with the 3-glucoside. This is the first identification of a glucoside of ginkgotoxin in Ginkgo biloba. An unknown compound of MW 267 also observed in the Ginkgo biloba seed extract was shown not to be 3,5'-diacetylginkgotoxin by its different LC retention time. Extraction of ground Ginkgo biloba seeds with boiling water in a Soxhlet for 2 x 2 h yielded a total of 179 microg/g of free ginkgotoxin. The concentration in powder from Ginkgo biloba capsules was several times lower than this (17-64 microg/g) in 3 samples but higher in another (457 microg/g). Canned ginkgo seeds (white nuts) contained no detectable free ginkgotoxin but the glucoside was present. Different extraction times were studied: 0.5 h gave only 52 microg/g free ginkgotoxin in the ginkgo seeds. However, boiling an extract for 4 h showed about 15% loss of ginkgotoxin and its glucoside.  相似文献   

7.
Ginkgo biloba (ginkgo) is one of most frequently used botanical dietary supplements. The bioactive constituents include the terpenoid lactones consisting of bilobalide and the ginkgolides A, B, C and J. A new assay based on high-performance liquid chromatography/electrospray tandem mass spectrometry (LC/MS/MS) was developed for the measurement of the terpenoid lactones in ginkgo products such as leaf powder and extracts. Initially, the MS/MS fragmentation pathways of ginkgolides were investigated to identify abundant fragment ions that might be useful for the sensitive and selective detection of ginkgolides and bilobalide during LC/MS/MS. Then, sample preparation and clean-up procedures were streamlined to maximize throughput by taking advantage of the selectivity of LC/MS/MS detection. Analyte recoveries exceeded 90%, the intra-assay and inter-assay relative standard deviations were <5%, the relative error was <8% and the limits of detection and quantification were 3.6-120 and 11-350 fmol, depending on the analyte that was injected on to the LC column. Therefore, this LC/MS/MS assay facilitated the rapid quantitative analysis of ginkgolides A, B, C and J and bilobalide in ginkgo dietary supplements with excellent recovery, reproducibity, accuracy and sensitivity.  相似文献   

8.
Rapid analytical methods for the determination of endosulfan isomers and endosulfan-sulfate in air and plant samples were developed. The insecticides were trapped from air using a column containing Florisil and extracted with a low volume of ethyl acetate, assisted by sonication. Pesticide residues were determined by gas chromatography with electron-capture detection using a nonpolar capillary column. Residue identities were confirmed by gas chromatography coupled with mass spectrometry. Recoveries of these compounds from air samples were always higher than 78% with an RSD lower than 11% and the detection limits obtained were at least 0.3 ng/l air. Leaf samples were homogenised with ethyl acetate and extracts cleaned-up on an aluminium oxide column. Pesticides were eluted with a hexane-ethyl acetate (80:20, v/v) mixture. Recoveries obtained from plant samples were higher than 78% with an RSD lower than 14% and detection limits in leaves were 0.02 microg/g for each pesticide. These methods were applied to study the volatilisation of endosulfan from tomato leaves under laboratory conditions. A volatilisation rate near 1% of the initial amount of endosulfan per hour was obtained during the first 24 h at room temperature.  相似文献   

9.
Terpenoid lactones in Ginkgo biloba leaves are the main active constituents and the content of these terpenes is therefore the key factor for evaluating the quality of the leaves, the extract, and its preparations distributed on the market. The precleanup sample solutions were applied onto the silica gel plate modified with sodium acetate solution and developed with a solvent system of toluene-ethyl acetate-acetone-methanol, and a fluorescence chromatogram was generated by means of postchromatographic thermal chemical reaction. Fluorescence scanning was conducted quantitatively. The methodology validation confirmed that it is a practical alternative for routine quality control for ginkgo terpenes and the results are comparable with those obtained by high-performance liquid chromatography (HPLC). On the basis of the method established, a quality survey of the various commercial ginkgo products from different sources was undertaken. The obtained data demonstrated that the fluctuation of the content of individual terpene and/or the total terpenes among replicate samples is so significant as to cast doubts on the consistency of their pharmacological and clinical efficacy.  相似文献   

10.
A rapid and simple method using accelerated solvent extraction and solid-phase extraction cleanup was developed and validated for the determination of 15 organophosphorus pesticides in ginkgo leaves by capillary gas chromatography with flame photometric detection. The pesticides were extracted at 100 degrees C under 1500 psi pressure in <20 min. The average recovery from 10 g ginkgo leaves, fortified at 3 levels ranging from 0.05 to 1.00 mg/kg, was 95.2% with a relative standard deviation of 4.6%. The limits of detection ranged from 1.11 x 10(-3) mg/kg (dimethoate) to 4.44 x 10(-3) mg/kg (dichlorvos). The proposed method showed acceptable accuracy and precision while minimizing environmental concerns, time, and labor. Furthermore, the method could be easily applied to the monitoring of these 15 organophosphorus pesticides in ginkgo leaves.  相似文献   

11.
Deep eutectic solvents (DESs)-based ultrasonic extraction of terpene trilactones (TTLs) from Ginkgo biloba leaves was efficiently developed. Sixteen DESs were prepared, and DESs composed of choline chloride-urea (ChCl-U) and betaine-ethylene glycol (BE-EG) gave higher TTL extraction yields than the present, most efficient solvent 70% ethanol. The extraction conditions were further optimized, and the optimum conditions were as follows: taking BE-EG containing 40% (w/w) water as the extraction solvent, 1:10 of G. biloba leaves powder-to-solvent ratio, and ultrasonic treatment at 45°C and 100?W for 20?min. A total extraction yield of 1.94?±?0.03?mg/g was obtained under the optimum conditions, which indicated that 99.37% of TTLs could be extracted from the G. biloba leaves powder by a single extraction. Moreover, the polyamide resin was used to recover the TTLs in DES extracting solution, and recovery yield of 95.1% was attained. Therefore, BE-EG containing 40% (w/w) water was a potential alternative solvent for TTLs extraction from G. biloba leaves.  相似文献   

12.
The accuracy, repeatability, and reproducibility characteristics of a method using multitoxin immunoaffinity column cleanup with liquid chromatography (LC) for determination of aflatoxins (AF; sum of aflatoxins B1, B2, G1, and G2) and ochratoxin A (OTA) in powdered ginseng and ginger have been established in a collaborative study involving 13 laboratories from 7 countries. Blind duplicate samples of blank, spiked (AF and OTA added) at levels ranging from 0.25 to 16.0 microg/kg for AF and 0.25 to 8.0 microg/kg for OTA were analyzed. A naturally contaminated powdered ginger sample was also included. Test samples were extracted with methanol and 0.5% aqueous sodium hydrogen carbonate solution (700 + 300, v/v). The extract was centrifuged, diluted with phosphate buffer (PB), filtered, and applied to an immunoaffinity column containing antibodies specific for AF and OTA. After washing the column with water, the toxins were eluted from the column with methanol, and quantified by high-performance LC with fluorescence detection. Average recoveries of AF from ginseng and ginger ranged from 70 to 87% (at spiking levels ranging from 2 to 16 microg/kg), and of OTA, from 86 to 113% (at spiking levels ranging from 1 to 8 microg/kg). Relative standard deviations for within-laboratory repeatability (RSDr) ranged from 2.6 to 8.3% for AF, and from 2.5 to 10.7% for OTA. Relative standard deviations for between-laboratory reproducibility (RSDR) ranged from 5.7 to 28.6% for AF, and from 5.5 to 10.7% for OTA. HorRat values were < or = 2 for the multi-analytes in the 2 matrixes.  相似文献   

13.
Mehmet Akyüz  ?evket Ata 《Talanta》2009,79(3):900-1824
Gas chromatography-mass spectrometry (GC-MS) and liquid chromatography with fluorescence detection (LC-FL) methods have been proposed for the determination of low level nitrite and nitrate in biological, food and environmental samples. The methods include derivatization of aqueous nitrite with 2,3-diaminonaphthalene (DAN), enzymatic reduction of nitrate to nitrite, extraction with toluene and chromatographic analyses of highly fluorescent 2,3-naphthotriazole (NAT) derivative of nitrite by using GC-MS in selected-ion-monitoring (SIM) mode and LC-FL. Nitrite and nitrate ions in solid samples were extracted with 0.5 M aqueous NaOH by sonication. The recoveries of nitrite and nitrate ions based on GC-MS and LC-FL results were 98.40% and 98.10% and the precision of these methods, as indicated by the relative standard deviations (RSDs) were 1.00% for nitrite and 1.20% for nitrate, respectively. The limits of detection of the GC-MS in SIM mode and LC-FL methods based on S/N = 3 were 0.02 and 0.29 pg/ml for nitrite and 0.03 and 0.30 pg/ml for nitrate, respectively.  相似文献   

14.
A method using immunoaffinity column chromatography (IAC) and liquid chromatography (LC) for determination of zearalenone in cereal grains, animal feed, and feed ingredients was collaboratively studied. The test portion is extracted by shaking with acetonitrile-water (90 + 10, v/v) and sodium chloride. The extract is diluted and applied to an immunoaffinity column, the column is washed with water or phosphate-buffered saline or methanol-water (30 + 70, v/v), and zearalenone is eluted with methanol. The eluate is evaporated, the residue is dissolved in mobile phase and analyzed by reversed-phase LC with fluorescence detection. The presence of zearalenone can be confirmed using an alternate excitation wavelength or diode array detection. Twenty samples were sent to 13 collaborators (8 in Europe, 2 in the United States, one in Japan, one in Uruguay, and one in Canada). Eighteen samples of naturally contaminated corn, barley, wheat, dried distillers grains, swine feed, and dairy feed were analyzed as blind duplicates, along with blank corn and wheat samples. The analyses were done in 2 sample sets with inclusion of a spiked wheat control sample (0.1 mg/kg) in each set. Spiked samples recoveries were 89-116%, and for the 18 naturally contaminated samples, RSDr values (within-laboratory repeatability) ranged from 6.67 to 12.1%, RSDR values (among-laboratory reproducibility) ranged from 12.5 to 19.7%, and HorRat values ranged from 0.61 to 0.90.  相似文献   

15.
A validated bioanalytical method for the determination of piperaquine (PQ) in plasma by solid-phase extraction (SPE) and liquid chromatography (LC) using peak compression is presented. Protein is precipitated from plasma with acetonitrile-1% aqueous acetic acid (85:15, v/v). An internal standard (IS) is added to the samples before they are loaded onto a strong cation exchanger (Isolute PRS) SPE column. PQ and the IS are analyzed by LC on a Zorbax SB-CN column (250 x 4.0 mm) with the mobile phase acetonitrile-phosphate buffer [I = 0.1, pH 2.5 (12:88, v/v)] and UV detection at 345 nm. Trichloroacetic acid (TCA) is added to the samples prior to injection into the chromatography system. PQ elutes in a gradient of TCA, which enables peak compression of PQ and significantly higher peak efficiency as a result. The intraassay precision for plasma is determined to be 5.4% at 3.00 microM and 5.8% at 0.050 microM. The interassay precision for plasma is 1.3% at 3.00 microM and 10.0% at 0.050 microM. The lower limit of quantitation and the limit of detection are 0.025 and 0.005 microM, respectively.  相似文献   

16.
Analytical methodologies with ultrasonic extraction and liquid chromatography (LC) were developed for the determination of phenolic compounds in dietary supplements containing Echinacea. The phenolic compounds determined by these methods included caftaric acid, chlorogenic acid, cynarin, echinacoside, and cichoric acid. Samples from tablets, capsules, and bags of tea blends were extracted by sonication for < or = 30 min with methanol-water (60 + 40). The extracts were centrifuged and filtered, and the filtrates were diluted and analyzed by LC using a reversed-phase column and coulometric electrochemical (EC) detection. The mobile phase was acetonitrile-ammonium formate buffer, pH 3.5 (15.3 + 84.7) containing tetrabutyl ammonium hydrogen sulfate as an ion-pairing reagent. Extraction conditions (e.g., composition of the extraction solvent and sonication time) were optimized for different types of samples. Intra- and interday analytical variations were determined, and intraday analyses were performed by 2 independent analysts using 2 different LC systems. Results were generally comparable. The LC method with EC detection showed better sensitivity and selectivity when compared with LC with ultraviolet detection, although results were similar for the 2 methods for major compounds, i.e., caftaric acid, echinacoside, and cichoric acid. The identities of these major compounds found in samples were confirmed by LC/electrospray ionization mass spectrometry.  相似文献   

17.
赵卉  王玉红  刘芳  王彦  谷雪  阎超 《色谱》2013,31(8):795-799
将微流蒸发光散射检测器( μELSD)与毛细管液相色谱(cLC)联用,应用于中药银杏叶提取物及其分散片制剂的分离检测领域。首先对 μELSD仪器参数进行优化。通过调节漂移管温度与载气流量,提高了分析物的响应,并减小了噪声。然后,搭建了cLC-μELSD分离检测平台,其相对常规LC可大大减小实验试剂消耗。流动相A为0.05%(体积分数,下同)三氟乙酸(TFA)水溶液,流动相B为含0.05% TFA的甲醇溶液。最优的洗脱梯度条件为:0~10 min,5%B~25%B;10~25 min,25%B~38%B;25~35 min,38%B;35~40 min,38%B~42%B;40~55 min,42%B~50%B。银杏叶提取物和复杂中药制剂银杏叶提取物分散片都得到了较好的分离,并在其中鉴定到紫外波段几乎无吸收的重要内酯类活性成分白果内酯以及银杏内酯A、B和C。测定了不同厂家银杏叶提取物中萜类内酯洗脱时间的相对标准偏差,结果均不大于2.42%,表明该体系在目标物的分析上具有良好的重现性。实验证明所建立的cLC-ELSD体系在复杂中药体系的分离检测中有良好的应用性。  相似文献   

18.
建立了一种高效、低成本的固相萃取-高效液相色谱(SPE-HPLC)同时测定鸡粪中6种常见抗生素(2种四环素类、2种喹诺酮类和2种磺胺类)的分析方法。样品经EDTA-McIlvaine缓冲液和有机混合提取液(甲醇-乙腈-丙酮,2:2:1,v/v/v)提取,过HLB固相萃取柱净化,甲醇-二氯甲烷(7:3,v/v)洗脱,高效液相色谱-二极管阵列检测器测定,检测波长λ=270 nm,柱温32℃,流动相为乙腈-0.7%(v/v)磷酸水溶液。该方法在0.5~100 mg/L质量浓度范围内的标准曲线相关系数r2在0.9999~1之间,样品加标回收率在70.0%~116.3%之间,相对标准偏差为1.2%~16.6%。方法检出限为1.3~6.7 μg/kg,定量限为3.5~9.2 μg/kg。应用该方法对辽宁省抚顺市某养鸡场当天的鸡粪进行检测,诺氟沙星和恩诺沙星(喹诺酮类)含量为未检出~9.23 mg/kg和1.57~7.69 mg/kg,磺胺二甲嘧啶(磺胺类)含量为2.02~13.05 mg/kg,磺胺甲恶唑、土霉素和四环素未测出。  相似文献   

19.
A new liquid chromatography/mass spectrometry (LC/MS) method is presented for the determination of chloramphenicol (CAP) residues in milk, eggs, chicken muscle and liver, and beef muscle and kidney. CAP is extracted from the samples with acetonitrile and defatted with hexane. The acetonitrile extracts are then evaporated, and residues are reconstituted in 10mM ammonium acetate--acetonitrile mobile phase and injected into the LC system. CAP is determined by reversed-phase chromatography using an Inertsil ODS-2 column and MS detection with negative ion electrospray ionization. Calibration curves were linear between 0.5-5.0 ng/g for all matrixes studied. The relative standard deviations for measurements by this method were generally <12%, and average recoveries ranged from 80 to 120%, depending on the matrix involved. The method detection limits of CAP ranged from 0.2 to 0.6 ng/g, which are comparable to previously reported results. The proposed method is rapid, simple, and specific, allowing a single analyst to easily prepare over 40 samples in a regular working day.  相似文献   

20.
St. John's wort (Hypericum perforatum L.) preparations, a top-selling botanical dietary supplement used primarily as an antidepressant, has recently been used as an ingredient in some food products sold as functional foods. A rapid extraction technique followed by a liquid chromatographic (LC) method was developed to determine 4 characteristic bioactive compounds (pseudohypericin, hypericin, hyperforin, and adhyperforin) from St. John's wort in dietary supplements and functional foods to which it was added. Solid samples, including dried leaf/flower mixture, dietary supplement capsules, tea bags, puff and snack bar, were extracted with methanol by sonication. Noncarbonated, fruit-flavored drinks were centrifuged and mixed with methanol. Compounds were then determined by isocratic, reversed-phase LC with UV detection at 2 wavelengths and further identified or confirmed by photodiode array spectra and LC/mass spectrometry. Within-laboratory method variations (% RSD) were satisfactory. Very low amounts, if any, of the 4 components were found in drink and puff samples, and none was found in the snack bar. The methods developed provide a useful means for the determination of St. John's wort components in dietary supplements and functional foods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号