首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
This paper presents a split Hopkinson pressure bar technique to obtain compressive stress-strain data for rock materials. This technique modifies the conventional split Hopkinson bar apparatus by placing a thin copper disk on the impact surface of the incident bar. When the striker bar impacts the copper disk, a nondispersive ramp pulse propagates in the incident bar and produces a nearly constant strain rate in a rock sample. Data from experiments with limestone show that the samples are in dynamic stress equilibrium and have constant strain rates over most of the test durations. In addition, the ramp pulse durations can be controlled such that samples are unloaded just prior to failure. Thus, intact samples that experience strains beyond the elastic region and postpeak stresses can be retrieved for microstructural evaluations. The paper also presents analytical models that predict the time durations for sample equilibrium and constant strain rate. Model predictions are in good agreement with measurements.  相似文献   

2.
利用高功率激光诱导的应力波对固体材料进行高应变率斜波压缩,是近年来快速发展的新型动高压实验技术。与传统加载手段不同,它可以在数ns时间内以极高的应变率(106~109 s-1)将薄样品平滑加载到数千万大气压,并仍然保持其固体状态。结合多种先进的诊断技术,可以测得样品材料的热力学、动力学参数和原位微观结构特性,是研究动高压物理、物态方程和高应变率动力学问题的先进途径。本文梳理了这种技术的发展历程,对其加载和诊断技术以及已取得的主要结果进行综述,并展望了其发展前景。  相似文献   

3.
Precision strain rate sensitivity measurement using the step-ramp method   总被引:1,自引:0,他引:1  
Current interest in modeling metal processing using constitutive relations is reliant on precision determination of materials testing parameters. One parameter, the strain rate sensitivity, is extensively quoted, but means to measure it precisely are generally unavailable. The best method to measure this parameter is by intermittent strain rate change tests whereby, in theory, the internal structure is kept constant during the rate change. Conventionally, it is difficult to achieve this constant structure requirement, since the load frame's elastic interaction with the specimen, as well as the specimen's elastic compliance, causes inelastic transients. These transients can be nullified by using the step ramp method and a highly responsive servohydraulic testing system. The implementation of such a method and the evaluation of the measured thermodynamic response is described.  相似文献   

4.
The ramp wave compression experiments of iron with different thicknesses were performed on the magnetically driven ramp loading device CQ-4. Numerical simulations of this process were done with Hayes multi-phase equation of state (H-MEOS) and dynamic equations of phase transition. The calculated results of H-MEOS are in good agreement with those of shock phase transition, but are different from those under ramp wave compression. The reason for this is that the bulk modulus of the material in the Hayes model and the wave velocity are considered constant. Shock compression is a jump from the initial state to the final state, and the sound speed is related to the slope of the Rayleigh line. However, ramp compression is a continuous process, and the bulk modulus is no longer a constant but a function of pressure and temperature. Based on Murnaghan equation of state, the first-order correction of the bulk modulus on pressure in the Hayes model was carried out. The numerical results of the corrected H-MEOS agree well with those of pure iron in both ramp and shock compression phase transition experiments. The calculated results show that the relaxation time of iron is about 30 ns and the phase transition pressure is about 13 GPa. There are obvious differences between the isentropic and adiabatic process in terms of pressure–specific volume and temperature–pressure. The fluctuation of the sound speed after 13 GPa is caused by the phase transition.  相似文献   

5.
混凝土类材料SHPB实验中确定应变率的方法   总被引:1,自引:0,他引:1  
由于混凝土类材料在SHPB实验中很难实现恒应变率加载,为了确定非恒应变率加载下的实验数据所对应的应变率,本文中针对不同强度(C20,C45,C70)和不同钢纤维含量(0%,0.75%,1.50%,4.50%)的混凝土进行了SHPB实验。对实验得到的30组恒应变率加载下的数据进行了分析总结,结果表明:实验数据所对应的恒应变率与全段平均应变率之间存在一定的比值关系,从而混凝土类材料SHPB实验数据所对应的应变率可以采用全段平均应变率的1.38倍来表征。通过对比非恒应变率加载和恒应变率加载下得到的应力应变曲线,验证了该确定应变率方法的合理性,并指出较短恒应变率加载下实验数据对应的应变率直接采用短平台段对应的应变率来表征是不合理的。  相似文献   

6.
Ramp wave experiments on the Sandia Z accelerator provide a new approach to study the rapid compression response of materials at pressures, temperatures and stress or strain rates not attainable in conventional shock experiments. Due to its shockless nature, the ramp wave experiment is often termed as an isentropic (or quasi-isentropic) compression experiment (ICE). However, in reality there is always some entropy produced when materials are subjected to large amplitude compression even under shockless loading. The entropy production mechanisms that cause deformation to deviate from the isentropic process can be attributed to mechanical and thermal dissipations. The former is due to inelasticity associated with various deformation mechanisms and the rate effect that is inherent in all the deformation processes and the latter is due to irreversible heat conduction. The main purpose of the current study is to gain insights into the effects of ramp and shock loading on the entropy production and thermomechanical responses of materials. Another purpose is to investigate the role of heat conduction in the material response to both the non-steady ramp wave and steady shock.Numerical simulations are used to address the aforementioned research objectives. The thermomechanical response associated with a steady shock wave is investigated first by solving a set of nonlinear ordinary differential equations. Using the steady wave solutions as the reference, the material responses under non-steady ramp waves are then studied with numerical wave propagation simulation. It is demonstrated that the material response to ramp and shock loading is essentially a manifestation of the interaction between the time scale associated with the loading and the intrinsic time scales associated with mechanical deformation and heat transfer. At lower loading rates as encountered in ramp loading, the loading path is closer to an isentrope and results in lower entropy production. The reasonable ramp rate to obtain a quasi-isentropic state depends on the intrinsic time scales of the dissipation mechanisms which are strongly material dependent. Thus shockless loading does not necessarily produce an isentropic response. Between two equilibrium states, heat conduction was shown to have significant effect on the temperature history but it contributes little to the overall temperature change if the specific heat remains constant. It also affects the history of entropy, but only the irreversible part of heat conduction contributes to the net entropy change. The various types of thermomechanical responses of materials would manifest themselves more significantly in terms of the thermal history than the mechanical history. Thus temperature measurement appears to be an important experimental tool in distinguishing the various mechanisms for the thermomechancial responses of the materials.  相似文献   

7.
During a Kolsky bar, also known as a split Hopkinson pressure bar (SHPB), experiment, stress equilibrium and strain rate constancy conditions directly contribute to the measurement quality for rate-sensitive materials. A Kolsky bar specimen is initially at rest, and then gradually accelerated to a desired rate. Stress equilibrium is incrementally achieved by multiple stress pulse reflections inside the specimen to reach the desired mean stress. The critical time to achieve constant strain rate and equilibrium stress depends on the impedance mismatch between the bars and the specimen. This paper examined this critical time based on using linear elastic specimens under uniaxial compression. In the first part, the critical time is experimentally measured for PMMA specimens loaded by aluminum, titanium, and steel bars using linear ramp incident pulses. The results show that increasing impedance mismatch increases the time to reach a constant rate, while the time to satisfy equilibrium remains nearly the same. In the second part, optimal bilinear-shaped incident loadings were evaluated and shown to achieve both conditions faster than linear loadings. The time to satisfy both conditions was mapped via simulation using various bilinear pulses over a wide range of impedance mismatches. The analysis shows bilinear loadings with initial rise time between 1.75 and 2.15 transits in the sample require minimum time to equilibrium. There exists an optimum region of bilinear loadings that can reduce the time to reach constant rate. Within such region, the bilinear slope ratio can be approximated to be a reciprocal function of initial rise time.  相似文献   

8.
通过三轴卸荷试验,探究了不同路径下卸荷速率对砂岩力学特性及破坏过程中的能量耗散的影响。试验结果表明在全过程应力-应变曲线的弹性阶段,轴向变形起主导作用,弹塑性阶段,环向应变的增加值大于轴向应变增加值。在围压卸荷阶段,卸荷速率越小,卸荷阶段的应变折合柔度越大,此时岩样的变形不充分,呈现明显的脆性破坏。恒主应力差路径下的耗散能大于恒轴压路径下的耗散能的35%,卸荷速率越大,岩样的弹性应变能越小。  相似文献   

9.
宗泽  王刚  方嘉铖  林茜  王永刚 《爆炸与冲击》2021,41(4):041405-1-041405-9
为了实现斜波加载,设计了一种“钉床型”广义波阻抗梯度飞片,即在基座上密排叠加许多小圆锥,简称“钉床型”飞片。该飞片采用激光选区熔化金属增材制造技术进行制备。利用一级轻气炮加载装置和全光纤激光位移干涉测试系统,开展不同工况下“钉床型”飞片高速击靶压缩实验和层裂实验,重点讨论小圆锥高度和撞击速度对斜波压缩加载波形的影响规律,以及斜波加载对不锈钢靶板层裂特性的影响。实验结果显示:(1)“钉床型”飞片对靶板产生的压缩是逐步的,从自由面速度剖面上观察到压缩波上升前沿时间被显著延长,形成了斜波波阵面,明显不同于冲击压缩的陡峭波阵面;(2)在飞片击靶速度近似恒定条件下,斜波波阵面的上升沿时间、平台速度峰值都明显依赖于“钉床型”飞片上的小圆锥高度,随着小圆锥高度增大,上升沿时间呈线性增大,而平台速度峰值呈线性减小;(3)在“钉床型”飞片的几何尺寸保持不变的条件下,斜波波阵面的上升沿时间随着飞片击靶速度的增大而线性减小,平台速度峰值则线性增大;(4)与冲击加载相比,“钉床型”飞片产生的斜波加载不会对材料的层裂强度产生明显影响,但对材料内部损伤演化速率有一定的影响。  相似文献   

10.
In this paper, a simple formula for the prediction of stress (strain) in the relaxation (creep) period is derived for a non-linear viscoelastic material model which takes into account the finite ramp time. Usually, it is assumed that the ramp time is small and, therefore, loading can be described via Heaviside step function. This assumption, when applied to the material parameters identification process, can lead to a large errors in the values of the approximated material parameters. Especially, for the materials which undergo significant stress decay in the beginning of relaxation the assumption of infinite small ramp time can induce severe errors. With the help of the derived formula more reliable material parameter identification can be accomplished. The proposed method is tested with numerical simulations and compared with analytical results, Heaviside step loading case and method described by Nordin and Varna. Simulations show good agreement with analytical results.  相似文献   

11.
12.
李尚荣  马记  许旻  杨杰 《实验力学》2006,21(3):322-328
形状记忆合金以其特有的形状记忆效应和超弹性,被广泛应用于医学、航空和建筑防震。在耗能性机构中,需要形状记忆合金能够在变速率条件下工作。为了获得非静态条件下的行为特性,比较静态和非静态条件下形状记忆合金的行为特性的差异,本文采用一种新的分析方法,即以形状记忆合金的特性参数为对象,来分析不同应变速率对形状记忆合金特性的影响。在不同的应变速率(0.0005/s,0.001/s,0.005/s,0.01/s,0.05/s,0.1/s)下,对50.8at%-Ni-Ti记忆合金丝的形状记忆效应和超弹性特性进行了实验研究。在低应变速率范围内,由实验结果得到:随应变速率增大,两种特性行为中的各纯相的杨氏模量保持不变;拉伸过程相变起始和终了临界应力会增大,卸载过程相变起始和终了临界应力会减小,滞后环面积增大;相变硬化系数在形状记忆效应行为中会增大,而在超弹性行为中基本不变。  相似文献   

13.
FRACTURE ANALYSIS OF A FUNCTIONALLY GRADED STRIP UNDER PLANE DEFORMATION   总被引:4,自引:0,他引:4  
In this paper the plane elasticity problem for a functionally graded strip containing a crack is considered. It is assumed that the reciprocal of the shear modulus is a linear function of the thickness-coordinate, while the Possion's ratio keeps constant. By utilizing the Fourier transformation technique and the transfer matrix method, the mixed boundary problem is reduced to a system of singular integral equations that are solved numerically. The influences of the geometric parameters and the graded parameter on the stress intensity factors and the strain energy release rate are investigated. The numerical results show that the graded parameters, the thickness of the strip and the crack size have significant effects on the stress intensity factors and the strain energy release rate.  相似文献   

14.
The high-temperature extension of metals to fracture is modeled for creep at constant stress or at constant strain rate. The dependence of the ultimate fracture strain on the loading factor (stress or strain rate) is studied. The nonmonotonic nature of this dependence with an internal maximum is described using the Rabotnov kinetic theory with one and two damage parameters. Available experimental data are analyzed. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 5, pp. 183–188, September–October, 2007.  相似文献   

15.
闫东明  林皋 《爆炸与冲击》2007,27(2):121-125
利用大连理工大学自行研制、改造的大型液压伺服混凝土静动三轴试验系统对立方体试件进行一向恒定侧压的动态压缩试验。完成了四个侧向恒定压力等级的试验,应变速率变化范围为10-5~10-2 s-1。探讨了不同应变速率以及不同恒定侧压条件下混凝土强度与变形的变化规律。以试验数据为基础,在八面体应力空间中建立了适用于单向恒定侧压条件下混凝土双轴动态破坏的强度公式,为大坝、海上采油平台等大型混凝土结构的抗震安全分析提供了参考。  相似文献   

16.
Maolin Du  Yi Wang  Zaihua Wang 《Meccanica》2017,52(15):3541-3547
We analyze the influences of the initial ramps of relaxation and creep tests on the determination of the parameters of the Scott-Blair’s model, the simplest model with a fractional derivative. The true input of a test is a constant with an initial ramp. The error resulted from neglecting the initial ramp increases with the increasing of the fractional order, and the closer the data are to the beginning, the larger the errors are. Based on the error analysis, an n-times rule is generalized from the ten-times rule. For illustration, the Scott-Blair’s model is fitted with the experimental data in literature. The data are of two polymer samples, PMMA and PTFE (methylmethacrylate and polytetrafluorethylene), and self-healing and thermoreversible rubbers.  相似文献   

17.
An improved calibration method for infrared radiometers is developed that has been shown to increase the accuracy of temperature measurement. To validate this new calibration technique, high strain rate compression tests are performed on the aluminum alloy BS 2011 and high strain rate torsion tests are performed on the titanium alloy 90% Ti-6%Al-4%V. The adiabatic temperature rise that occurs during these tests is measured using an infrared radiometer and validated, in the case of the compression tests, using fast response thermocouples. The proportion of plastic work converted to heat, , is found to increase with plastic strain for both materials, which is similar to previous research. These results challenge the classical assumption that has a constant value of approximately 0.95.  相似文献   

18.
We present pulse shaping techniques to obtain compressive stress-strain data for brittle materials with the split Hopkinson pressure bar apparatus. The conventional split Hopkinson pressure bar apparatus is modified by shaping the incident pulse such that the samples are in dynamic stress equilibrium and have nearly constant strain rate over most of the test duration. A thin disk of annealed or hard C11000 copper is placed on the impact surface of the incident bar in order to shape the incident pulse. After impact by the striker bar, the copper disk deforms plastically and spreads the pulse in the incident bar. We present an analytical model and data that show a wide variety of incident strain pulses can be produced by varying the geometry of the copper disks and the length and striking velocity of the striker bar. Model predictions are in good agreement with measurements. In addition, we present data for a machineable glass ceramic material, Macor, that shows pulse shaping is required to obtain dynamic stress equilibrium and a nearly constant strain rate over most of the test duration.  相似文献   

19.
A novel dynamic compressive experimental technique has been developed based on a split Hopkinson pressure bar. This new method dynamically loads the ceramic specimen by two consecutive stress pulses. The first pulse determines the dynamic response of the intact ceramic materiaal and then crushes the specimen, and the second pulse determines the dynamic compressive constitutive behavior of the ceramic rubble. Precise pulse shaping ensures that the specimen deforms at nearly constant strain rates under dynamic stress equilibrium during the loading by both stress pulses. Pulse shaping also controls the amplitudes of loading pulses, the values of strain rates, the maximum strains in the rubble specimens, and the proper separation time between the two loading pulses. The feasibility of the new technique is demonstrated by the experimental results obtained on an AD995 alumina.  相似文献   

20.
考虑到金属柱壳膨胀过程中随机裂纹萌生对测试结果的可能干扰,设计了预置有中心穿透圆孔的柱壳样品,采用多普勒光纤探针测量系统获得了柱壳外壁更优的径向速度历史。基于膨胀柱壳实验中固有的非恒定应变率现象,研究了获得恒定应变率下本构方程的方法,并采用改进后的本构方程确定方法,获得了20钢恒定应变率下的应力应变关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号