首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
提出了一种阵列式线-线沿面介质阻挡放电结构,利用双极性高压纳秒脉冲电源,在大气压空气中激励产生了相对大面积的放电等离子体。其中,高压电极、地电极均为圆柱形金属,放电反应器由20组相间排列的阵列式线型高压电极和套有介质管的阵列式线型地电极组成。利用电压探头、电流探头、示波器等测量了放电电压和放电总电流,并计算得出了放电的实际电流。利用光纤、光栅光谱仪、CCD等测量了波长范围在300~440 nm和766~778 nm的发射光谱,即氮分子第二正带N2 (C3Πu→B3Πg)包括Δν= +1, 0, -1, -2, -3、氮分子离子第一负带N+2(B2Σ+u→X2Σ+g),N2 (B3Πg→A3Σ+u)和O (3p5P→3s5S2)的发射光谱。比较了氮分子第二正带N2 (C3Πu→B3Πg)的各个振动峰和各个活性物种的发射光谱强度,以及这些发射光谱强度随着脉冲峰值电压的变化。测量了N2(C3Πu→B3Πg, 0-0)的二次、三次衍射光谱,与原始光谱在转动带、背景光谱等方面进行了比较,并计算了二次衍射和原始光谱之间的峰值比。利用氮分子第二正带N2 (C3Πu→B3Πg, Δν=+1, 0, -1, -2)和氮分子离子第一负带N+2 (B2Σ+u→X2Σ+g, 0-0)模拟了等离子体的转动温度和振动温度,对模拟结果进行了比较,并研究了脉冲峰值电压对等离子体振动温度和转动温度的影响。通过测量放电的电压和计算得到的放电电流发现,当脉冲峰值电压为22 kV,脉冲重复频率为150 Hz时,阵列式线-线沿面介质阻挡放电的放电电流在正脉冲、负脉冲两个方向上均可达75 A左右。通过诊断放电等离子体的发射光谱发现,在测量的波长范围内,放电产生的活性物种主要有氮分子第二正带N2 (C3Πu→B3Πg)、氮分子离子第一负带N+2(B2Σ+u→X2Σ+g),N2 (B3Πg→A3Σ+u)和O (3p5P→3s5S2)。在脉冲峰值电压22~36 kV的变化范围内,氮分子第二正带N2(C3Πu→B3Πg, 0-0)的发射光谱强度始终保持最强,N2 (B3Πg→A3Σ+u)次之,而氮分子离子第一负带N+2(B2Σ+u→X2Σ+g)和O (3p5P→3s5S2)的发射光谱强度较弱。同时,当脉冲峰值电压升高时,氮分子第二正带N2 (C3Πu→B3Πg)的所有振动峰,以及氮分子离子第一负带N+2(B2Σ+u→X2Σ+g),N2 (B3Πg→A3Σ+u)和O (3p5P→3s5S2)的发射光谱强度均随之升高。通过比较氮分子第二正带N2(C3Πu→B3Πg, 0-0)的原始、二次衍射、三次衍射光谱发现,二次、三次衍射光谱的转动带更清晰,但三次衍射光谱的背景更强,因此氮分子第二正带N2(C3Πu→B3Πg)的二次衍射光谱更有利于模拟等离子体的转动温度。通过比较模拟得到的振动温度和转动温度发现,氮分子第二正带N2 (C3Πu→B3Πg, Δν=-2)在N2 (C3Πu→B3Πg)四个谱带Δν=+1, 0, -1, -2中最适于模拟等离子体振动温度,而利用氮分子离子第一负带N+2 (B2Σ+u→X2Σ+g,0-0)模拟得到的等离子体转动温度要比N2 (C3Πu→B3Πg, Δν=-2)的模拟结果高约10~15 K。同时,当脉冲峰值电压升高时,由N2 (C3Πu→B3Πg, Δν=-2)和N+2 (B2Σ+u→X2Σ+g, 0-0)模拟得到等离子体的转动温度均出现了略微上升的趋势,而利用N2 (C3Πu→B3Πg, Δν=-2)模拟得出的振动温度则略微下降。  相似文献   

2.
陈玉红  杜瑞  张致龙  王伟超  张材荣  康龙  罗永春 《物理学报》2011,60(8):86801-086801
采用第一性原理方法研究了H2分子在Li3N(110)晶面的表面吸附. 通过研究H2/Li3N(110)体系的吸附位置、吸附能和电子结构发现: H2分子吸附在N桥位要比吸附在其他位置稳定,此时在Li3N(110)面形成两个-NH基,其吸附能为1.909 eV,属于强化学吸附;H2与Li3N(110)面的相互作用主要是H 1s轨道与N 关键词: 第一性原理 3N(110)')" href="#">Li3N(110) 2')" href="#">H2 吸附和解离  相似文献   

3.
用能量自洽法研究碱金属双原子分子的势能曲线   总被引:6,自引:1,他引:5       下载免费PDF全文
文静  孙卫国  冯灏 《物理学报》2000,49(12):2352-2356
用能量自洽法(ECM)研究了碱金属双原子分子一些电子激发态的势能曲线:Na2 分子的21Πg,43Πg和b3Π< sub>u电子激发态,K2分子的a3Σu,21Πg,B1Πu和A关键词: 能量自洽 双原子分子 势能 碱金属  相似文献   

4.
路战胜  李沙沙  陈晨  杨宗献 《物理学报》2013,62(11):117301-117301
Cu-CeO2体系因其特殊的催化能力而在固体氧化物燃料电池和水煤气转化反应等多个催化领域有重要应用. 采用基于密度泛函理论的第一性原理方法, 在原子和电子层面上系统地研究了单个Cu原子及Cu小团簇在CeO2(110)面上的吸附构型, 价键特性和电子结构, 结果表明: 1) 单个Cu原子的最稳定吸附位是两个表面O的桥位; 2) Cu团簇的稳定吸附构型为扭曲的四面体结构; 3) Cu原子及Cu团簇的吸附在CeO2(110)面的gap区域引入了间隙态, 这些间隙态主要来自于Cu及其近邻的O和表层还原形成的Ce3+, 间隙态的出现表明Cu的吸附增强了CeO2(110)表面的活性; 4) 吸附的单个Cu原子及Cu团簇分别被CeO2(110)面表层的Ce4+离子氧化形成了Cuδ+和Cu4δ+, 并伴随着Ce3+离子的形成, 这个反应可归结为Cux/Ce4+→Cuxδ+/Ce3+; 5) Cu团簇的吸附比Cu单原子的吸附引入了更多的Ce3+离子, 进而形成了更多的Cuδ+-Ce3+催化活性中心. 结合已报道的Cu/CeO2(111)界面特性, 更加全面地探明了Cu与CeO2(111)和(110)两个较稳定低指数表面的协同作用特性, 较为系统地揭示了Cu增强CeO2催化特性的原因及Cu与CeO2协同作用的内在机理. 关键词: 2')" href="#">Cu/CeO2 U')" href="#">DFT+U 吸附 电子结构  相似文献   

5.
周如洪  曹培林 《物理学报》1993,42(3):470-476
用原子交叠和电子离域-分子轨道(ASED-MO)方法和原子集团模型Pt21O2研究了O2与Pt(111)面的相互作用过程。由总能极小,发现O2在Pt(111)面平躺吸附比垂直吸附能量更低,其中O2平行吸附于桥位是最稳定的吸附位,而且O2分子键长伸长到1.35?,与最近的近边X射线吸收精细结构谱(NEXAFS)实验值(1.37±0.05)?符合得很好。同时,衬底向O2 关键词:  相似文献   

6.
本文利用受激Raman抽运,选择性地制备了C2H2分子电子基态的红外非激活振动能级的单一转动态(X1g+,v″2=1,J″=9,11,13),并从紫外激光诱导的A1Au(v′3=1)←X1g+(v″2=1)荧光谱,直接测定上述三个转动态的C< 关键词:  相似文献   

7.
Two 1Πg states of Na2 for v≤13 have been observed by using optical-optical double resonance (OODR) fluorescence excitation spectroscopy. The intermediate levels in B1Πu state are identified by the numerical calculations with the molec-ular constants for B1Πu←X1Σg+ transitions and confirmed by the complemen-tary A1Σg+←X1Σg+ polarization spectra. Absolute vibrational numberings of the (6d)1Πg and (7d)1Πg states are determined by comparing the experimental OODR excitation intensities with the simulated Franck-Condon factors. The Dnnham coef-ficients and the Rydberg-Klein-Rees (RKR) potential energy curves of the (6d)1Πg, (7d)1Πg states are reported.  相似文献   

8.
魏彦薇  杨宗献 《物理学报》2008,57(11):7139-7144
采用基于广义梯度近似的投影缀加平面波(projector augmented wave)雁势和具有三维周期性边界条件的超晶胞模型,用第一性原理方法,计算并分析了Au在CeO2(110)和Zr掺杂的CeO2(110) 面的吸附能,吸附结构和电子结构等特征.从而得出Zr掺杂对Au/CeO2(110)吸附体系的影响.结果表明:Zr的掺杂增大了Au在CeO2(110) 面的吸附能,并改变了最强吸附位置,且导致了吸附体系中衬底结 关键词: Au Zr掺杂 2')" href="#">CeO2 吸附  相似文献   

9.
朱萍  唐景昌  何江平 《物理学报》2000,49(8):1632-1638
利用多重散射团簇方法(MSC)对吸附系统SO2/Ag(110)的S原子K边X射线吸收精细结构谱(NEXAFS)作了理论分析.研究表明,覆盖度为0.5时,吸附的SO2的S—O键长比气体状态时增长了(0.014±0.006)nm,OSO键角减小了15°±5°;SO2分子的S原子处于芯位,但两个O原子处于不对称的位置;分子平面与(110)的夹角约为52°,同时分子平面相对衬底表面法线有一小角度的倾斜.MSC计算证实了该吸附系统存在一介于π关键词: X射线吸收精细结构 2/Ag(110)')" href="#">吸附系统SO2/Ag(110) 多重散射团簇方法  相似文献   

10.
利用紫外光电子谱(UPS)对乙烯(C2H4)和乙炔(C2H2)气体在Ru(1010)表面的吸附及与K的共吸附进行了研究,实验结果表明:当衬底温度超过200K,乙烯即发生脱氢反应后,σCH和σCC能级均向高结合能方向移动.在室温下,σCH和σCC能级位置与乙炔在Ru(1010)表面的吸附时的分子能级完全一致.乙烯发生脱氢反应后的主要产 关键词: 乙烯 乙炔 钾 Ru(1010)表面  相似文献   

11.
《Surface science》1986,177(2):L971-L977
Molecular oxygen adsorbed on (110) and polycrystalline Cu surfaces has been investigated by UPS, XPS, AES, HREELS and LEED. Molecularly adsorbed O2 on the (110) surface shows the characteristic three-peak He II spectrum due to πg, πu and σg orbitals, accompanied by an O-O stretching frequency at 660 cm−1. On the polycrystalline Cu surface, adsorbed O2 shows the three peak He II spectra with a considerably smaller separation between the πu and σg band and two O-O stretching bands at 610 and 880 cm−1. O2 adsorbed on the Cu(110) surface gives rise to a (1 × 1) LEED pattern and characteristic K π1π1 transition in the Auger spectrum.  相似文献   

12.
《Surface science》1986,177(3):515-525
The adsorption of bromine on the (110) surface of silver has been studied by ultraviolet ( = 21.2 and 40.8 eV) photoelectron spectroscopy in the temperature range of 100–300 K. Four different adsorption and reaction states could be detected. For fractional monolayer coverages Br2 adsorbs dissociatively on the Ag(110) surface. The chemisorption of bromide leads to new emission features at about 3 and 5.2 eV below EF, which are assigned as occupied antibonding structures (3 eV) and as bonding Br4px, y orbitals (5.2 eV). At 100 K, further bromide adsorption leads to the formation of an AgBr layer with molecular adsorbed bromine on top of this corrosion layer. The He I spectrum is dominated by structures at 3.5, 5.8 and 7.5 eV which are due to emission from the πg, πu and σg molecular orbitals of Br2. The buildup of the AgBr layer is clearly demonstrated by desorbing the molecular bromine at about 150 K. The resulting spectrum of the AgBr layer shows peaks at 2.5 and 3.4 eV with p- and mixed-in d-character and peaks at 4.1, 5.2 and 6.1 eV which are primarily d-like. Heating of the AgBr layer up to 300 K results in a transformation from a 2D layer into a 3D agglomeration of larger AgBr clusters on top of a Br/Ag(110) chemisorption layer.  相似文献   

13.
Using the geometry of the ethene molecule when adsorbed on transition metal surfaces, as predicted by Felter and Weinberg [Surface Sci. 103 (1981) 265], but omitting molecular twist, a tight-binding model has been employed to predict the effect of chemisorption on the σ-levels of the molecule. The energy of the σCC-level changed appreciably from its free space value, and based on these calculations we have reinterpreted the experimental data and have revised the prediction of the geometry. The qualitative nature of the distortions, namely an increase in the C-C bond length and reduction of the C-C-H and H-C-H angles, remains intact. Secondly, the interaction of the π-orbitals of ethene with the d-band states of the metal surface has been studied, using a model of localized bonding between the metal and the molecule, within the Hartree-Fock approximation using an Anderson Hamiltonian. The conclusions are that as the strength of the metal-molecule interaction increases, the π-bond order decreases. Using experimental values of the chemisorption energy the model predicts that, for Ni and Cu, electrons are transferred from the molecule to the metal. This is in accord with the observed decrease in the work function for both these systems.  相似文献   

14.
ABSTRACT

A computational study of the complexes formed by F2C=CFZH2 (Z?=?P, As, and Sb) and F2C=CFPF2 with two Lewis bases (NH3 and NMe3) has been carried out. In general, two minima complexes are found, one with a σ-hole pnicogen bond and the other one with a π-hole tetrel bond in most complexes but two σ-hole pnicogen bonded complexes are obtained for F2C=CFZH2 and NH3. They have similar stability though F2C=CFSbH2 engages in a much stronger σ-hole pnicogen bond with NMe3. The –PF2 substitution makes the π-hole on the terminal carbon form a tetrel bond with NH3. A heavier –ZH2 group engages in a stronger σ-hole pnicogen bond but results in a weaker π-hole tetrel bond. Other than electrostatic interaction, the stability of both complexes is attributed to the charge transfer from the N lone pair into the C–Z/H–Z anti-bonding orbital in the pnicogen bond and the C=C anti-bonding orbital in the tetrel bond.

The σ-hole pnicogen bonded and π-hole tetrel bonded complexes between F2C=CFZH2 (Z = P, As, and Sb) and two Lewis bases (NH3 and NMe3) have been compared. The results indicate that both interactions can compete, dependent on the nature of the N base.  相似文献   

15.
Despite the application of a variety of surface sensitive techniques to the adsorption of simple hydrocarbons on well characterized metallic surfaces, no consistent picture has appeared. We review briefly the published spectroscopic results of ultraviolet photoelectron spectroscopy (UPS) and electron energy loss spectroscopy (EELS) which probe, respectively, the electronic and vibrational structure of the surface-molecular complex, and we consider appropriate free molecular analogues, not only in their ground state but also in their first excited states. A simplified approach to determine the chemisorption geometry from UPS level shifts and EELS is presented. The technique allows an isolation of distortion induced shifts from the total relaxation shift, and we find that the true relaxation shift is rather constant, approximately 2.1 eV for the cases considered. These shifts can then be used to estimate the distance of the molecule to the surface. We concentrate primarily on four systems, C2H2 and C2H4 on Ni(111) and Pt(111), adsorbed at low temperature (below the onset of dissociation). Depending on the metal, the hydrocarbon can adsorb in a di-σ arrangement or with a distortion resembling the lowest energy configuration of the first excited state of the free molecule. We also consider briefly C2H4 on Ag and Cu in which no distortion occurs. The distortions that resemble the first excited states might occur as a consequence of donation of bonding (backbonding) electrons from (to) the normally filled π (empty π1) to (from) the empty (filled) d-band states of the metal. The net effect on the hydrocarbon to partially empty the π level and fill the π1 level, is analogous to a low excitation of the free molecule, π → π1. For C2H4 (planar in the ground state), the lowest excitation is the triplet T-state (3–4 eV) of minimal energy for a 90° twisted configuration with a lengthened C-C bond. Acetylene is a linear molecule in the ground state, but cis- or trans-bent for the triplet excitations, ~a (5.2 eV) or ~b (6.0 eV), respectively. Chemisorbed geometries derived from these configurations seem possible for C2H4 on Ni(111) and C2H2 on Pt(111), while interchanging the adsorbates and substrates gives di-σ bonding, (sp3 hybridization), as proposed previously in the literature. For C2H4 on Ni(111), two of the hydrogens are twisted into the surface which leads to a softening of the CH vibrational frequency. For the four systems considered, the data are consistent with the C-C bond essentially parallel to the surface, but tilted orientations are not ruled out. While the models are clearly oversimplified, they suggest an interesting point of departure for likely chemisorption geometries. Also, some intriguing correspondences to the (presumed) location of the normally empty π1 level and the d-band are noted.  相似文献   

16.
The chemisorption of CO on a Cr (110) surface is investigated using the quantum Monte Carlo method in the diffusion Monte Carlo (DMC) variant and a model Cr2CO cluster. The present results are consistent with the earlier ab initio HF study with this model that showed the tilted/near-parallel orientation as energetically favoured over the perpendicular arrangement. The DMC energy difference between the two orientations is larger (1.9 eV) than that computed in the previous study. The distribution and reorganization of electrons during CO adsorption on the model surface are analysed using the topological electron localization function method that yields electron populations, charge transfer and clear insight on the chemical bonding that occurs with CO adsorption and dissociation on the model surface.  相似文献   

17.
The photoelectron (HeI) spectra of 1,3-thiazole and its 2F, 2Cl, 2Br, 4Br and 5Br-derivatives are reported. The assignment of the first few bands of the various spectra to the corresponding molecular orbital is based, for thiazole, on the results of an ab initio SCF—MO calculation, while for the various halogen derivatives, on reasonings based on perturbation theory.In particular, the first five outermost molecular orbitals of thiazole probably correspond to π3 (9.50 eV), π2 (10.24), σN (10.48; orbital mainly localized on the nitrogen atom), σS (12.78; orbital mainly localized on the sulphur atom) and π1 (13.5).  相似文献   

18.
Generation of F-H pairs and σ-luminescence induced by excitation of the self-trapped excitons with polarized light causing the 1s→ 2p transitions has been measured. The results were analyzed based on the assumption that the non-radiative transitions that follow photoexcitation depend only on the state reached by the excitation, irrespective of the photon energy of the excitation. The absence of the dependence on exciting photon energy of the effective yield of removal from the triplet manifold after excitation to each substate obtained from the analysis proves that the above assumption is valid. The relative non-radiative transition probabilities between the 2p substates and from the 2p-substates to the lowest triplet state, the F-H pair, the σ-luminescent state and the ground state were obtained. It is shown that the de-excitation channels from each substate are substantially different from each other. The following transitions are found to have high probabilities: from the B1g state to the F-H pairs in KCl and KBr, from theAg state to the σ-luminescent state and the lowest triplet state in KBr and to the lowest triplet state in KCl and from the B2g state to the B1g state in KCl and KBr, where Ag, B1g and B2g denote the states with the electron excited to the σu orbital, the πu orbital lying in the (100) plane in which the (halogen)2?-molecular ion is situated and the other πu orbital, respectively. The mechanisms of these non-radiative transitions were discussed.  相似文献   

19.
The molecular chemisorption of N2 on the reconstructed Ir(110)-(1 × 2) surface has been studied with thermal desorption mass spectrometry, XPS, UPS, AES, LEED and the co-adsorption of N2 with hydrogen. Photoelectron spectroscopy shows molecular levels of N2 at 8.0 (5σ + 1π) and 11.8 (4σ) eV in the valence band and at 399.2 eV with a satellite at 404.2 eV in the N(1s) region, where the binding energies are referenced to the Ir Fermi level. The kinetics of adsorption and desorption show that both precursor kinetics and interadsorbate interactions are important for this chemisorption system. Adsorption occurs with a constant probability of adsorption of unity up to saturation coverage (4.8 × 1014 cm?2), and the thermal desorption spectra give rise to two peaks. The activation energy for desorption varies between 8.5 and 6.0 kcal mole?1 at low and high coverages, respectively. Results of the co-adsorption of N2 and hydrogen indicate that adsorbed N2 resides in the missing-row troughs on the reconstructed surface. Nitrogen is displaced by hydrogen, and the most tightly bound state of hydrogen blocks virtually all N2 adsorption. A p1g1(2 × 2) LEED pattern is associated with a saturated overlayer of adsorbed N2 on Ir(110)-(1 × 2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号