首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
A complex investigation of the dynamics of electronic excitations in potassium dihydrophosphate (KDP) crystals is performed by low-temperature time-resolved vacuum ultraviolet optical luminescence spectroscopy with subnanosecond time resolution and with selective photoexcitation by synchrotron radiation. For KDP crystals, data on the kinetics of the photoluminescence (PL) decay, time-resolved PL spectra (2–6.2 eV), and time-resolved excitation PL spectra (4–24 eV) at 10 K were obtained for the first time. The intrinsic character of the PL of KDP in the vicinity of 5.2 eV, which is caused by the radiative annihilation of self-trapped excitons (STEs), is ascertained; σ and π bands in the luminescence spectra of the STEs, which are due to singlet and triplet radiative transitions, are resolved; and the shift of the σ band with respect to the π band in the spectra of the STEs is explained.  相似文献   

2.
《Radiation measurements》2007,42(4-5):742-745
Beryllium oxide (BeO) crystals were investigated by time-resolved low temperature VUV-spectroscopy at the SUPERLUMI station and BW3 beam line of HASYLAB (DESY, Hamburg). Photoluminescence spectra (3–10.5 eV), luminescence decay kinetics upon selective photoexcitation, as well as luminescence excitation (50–650 eV) and reflectivity (9–35 eV) spectra were measured and analyzed for oriented BeO crystals. It was shown that study of oriented crystals makes the traditional time-resolved spectroscopy method essentially more informative. Formation of the self-trapped exciton excited states of different multiplicity was found to sensitively depend on excitation energy and mutual orientation of the crystal's C optical axis and electric vector E of exciting polarized synchrotron radiation.  相似文献   

3.
In order to investigate the soft X-ray energy transformation in oxide detectors the optical spectra of several wide-gap oxide crystals were analyzed. The time-resolved luminescence (2.5–10.5 eV) and luminescence excitation spectra (50–200 and 500–630 eV) as well as decay kinetics of luminescence at 10 and 295 K were recorded using the synchrotron radiation from BW3 channel (HASYLAB, DESY). Several analogous features were discovered in the excitation spectra of both intrinsic self-trapped exciton luminescence and recombination luminescence for BeO, BeAl2O4, Be2SiO4 and AlPO4 crystals under inner-shell excitation. Simultaneously, the excitation of Ce3+-luminescence in scintillating Be2La2O5-Ce crystals significantly differs.  相似文献   

4.
The electronic and crystal structures of SrMgF4 single crystals grown by the Bridgman method have been investigated. The undoped SrMgF4 single crystals have been studied using low-temperature (T = 10 K) time-resolved fluorescence optical and vacuum ultraviolet spectroscopy under selective excitation by synchrotron radiation (3.7–36.0 eV). Based on the measured reflectivity spectra and calculated spectra of the optical constants, the following parameters of the electronic structure have been determined for the first time: the minimum energy of interband transitions E g = 12.55 eV, the position of the first exciton peak E n = 1 = 11.37 eV, the position of the maximum of the “exciton” luminescence excitation band at 10.7 eV, and the position of the fundamental absorption edge at 10.3 eV. It has been found that photoluminescence excitation occurs predominantly in the region of the low-energy fundamental absorption edge of the crystal and that, at energies above E g , the energy transfer from the matrix to luminescence centers is inefficient. The exciton migration is the main excitation channel of photoluminescence bands at 2.6–3.3 and 3.3–4.2 eV. The direct photoexcitation is characteristic of photoluminescence from defects at 1.8–2.6 and 4.2–5.5 eV.  相似文献   

5.
The photoluminescence (PL) emission and excitation spectra of undoped and doped with rare-earth (RE = Eu, Tb) ions K3Bi5(PO4)6 and K2Bi(PO4)(MoO4) crystals are studied in 3.7–14 eV region of the excitation photon energies at T = 8 and 300 K. The mechanisms of the host-related and RE-related luminescence in 3.7–7 eV region of the excitation photon energies are revealed in comparative analysis of the PL spectra of studied compounds. It is assumed that the excitation mechanisms of host luminescence of K3Bi5(PO4)6 and K2Bi(PO4) (MoO4) crystals below 4.8 eV are related to Bi3+ ions in oxygen surrounding. An efficient energy transfer from the Bi3+-related luminescence centers to the emitting RE centers exists in crystals with low concentration of the RE dopants (1%). The PL excitation spectra of K3Bi5(PO4)6 crystals with high concentration of Eu dopants are formed by O – Eu CT transitions.  相似文献   

6.
Low-temperature (T = 7 K) time-resolved selectively photoexcited luminescence spectra (2–6 eV) and luminescence excitation spectra (8–35 eV) of wide-bandgap chrysoberyl BeAl2O4, phenacite Be2SiO4, and beryl Be3Al2Si6O18 crystals have been studied using time-resolved VUV spectroscopy. Both the intrinsic luminescence of the crystals and the luminescence associated with structural defects were assigned. Energy transfer to impurity luminescence centers in alexandrite and emerald was investigated. Luminescence characteristics of stable crystal lattice defects were probed by 3.6-MeV accelerated helium ion beams.  相似文献   

7.

The time-resolved luminescence spectra in energy region of 2.0-6.0 v eV, as well as the excitation spectra (4-35 v eV), reflectivity and the decay kinetics were studied at T =10 v K and 295 v K using selective vacuum ultraviolet excitation in nominally pure crystals as well as crystals with intrinsic defects and radiation defects induced by fast electrons.  相似文献   

8.
Luminescence and thermally stimulated luminescence (TL) of BeO: Mg crystals are studied at T = 6–380 K. The TL glow curves and the spectra of luminescence (1.2–6.5 eV), luminescence excitation, and reflection (3.7–20 eV) are obtained. It is found that the introduction of an isovalent magnesium impurity into BeO leads to the appearance of three new broad luminescence bands at 6.2–6.3, 4.3–4.4, and 1.9–2.6 eV. The first two are attributed to the radiative annihilation of a relaxed near-impurity (Mg) exciton, the excited state of which is formed as a result of energy transfer by free excitons. The impurity VUV and UV bands are compared with those for the intrinsic luminescence of BeO caused by the radiative annihilation of self-trapped excitons (STE) of two kinds: the band at 6.2–6.3 eV of BeO: Mg is compared with the band at 6.7 eV (STE1) of BeO, and the band at 4.3–4.4 eV is compared with the band at 4.9 eV (STE2) of BeO. In the visible region, the luminescence spectrum is due to a superposition of intracenter transitions in an impurity complex including a magnesium ion. The manifestation of X-ray-induced luminescence bands at T = 6 K in BeO: Mg indicates their excitation during band-to-band transitions and in recombination processes. The energy characteristics of the impurity states in BeO: Mg are determined; the effect of the isovalent impurity on the fluctuation rearrangement of the BeO: Mg structure in the thermal transformation region of STE1 → STE2 is revealed.  相似文献   

9.
The spectra and decay kinetics of luminescence and the excitation and reflection spectra of the luminescence of orthosilicates A 2SiO5 (A = Y, Lu, Sc, Gd), both nominally pure and doped with cerium, are measured using time-resolved VUV spectroscopy in the ranges of energies ?ν = 1.5–16 eV and temperatures T = 8–3000 K. The band structure of the crystals is calculated in the local electron density approximation (LDA). The origin of the intrinsic luminescence in the crystals studied is established, and the assumption regarding the existence of self-trapped excitons and their structure is made.  相似文献   

10.
The excitation spectra of luminescence in irradiated and nonirradiated corundum crystals are investigated by means of highly polarised synchrotron radiation in 5 to 30 eV region. In the fundamental absorption region the double-exciton peaks are observed in the region 8.5-9.2 eV for irradiated (especially by neutrons) crystals at temperature 90 K. At 9.5 eV sharp drops appeared, in the luminescence spectrum space which were interpreted as nonirradiative near-surface recombination, the probability of which sharply increased at high absorption coefficients. The enhancement of the luminescence efficiency in the high-energy region was connected with the decay effect of electron excitations as well as with the influence of volumetric excitations leading to the enhancement of recombination glow. Received 16 October 1998 and Received in final form 20 January 1999  相似文献   

11.
Abstract

The origin of the luminescence bands at 7.5 eV anv 3.8 eV appearing additionaly to the luminescence of F- and F+- centres in pure Al2O3 are investigated. The time - resolved luminescence spectra, absorption and luminescence excitation spectra as well as trap spectroscopy data depending on deviation from the stochiometry of crystals are discussed in terms of self - trapping of excitons in two configurations. The role of defects due to annihilation of excitons is considered.  相似文献   

12.
Undoped β-Ga2O3 single crystals were grown using the floating zone technique under a pressure of 2 atm oxygen. Luminescence spectra of the crystals were measured with steady-state X-ray (<15 keV) and UV (258 nm, 4.8 eV) sources. The X-ray excitation produced a spectrum with a peak at 390 nm (3.2 eV) whereas the UV excited spectrum had a peak at 430 nm (2.9 eV). The luminescence rise and decay were also examined by using picosecond X-ray and sub-picosecond UV pulses. It was found that the X-ray pulse excitation gave a slower rise and a faster decay of the luminescence compared with the UV pulse excitation. These results suggest that X-ray excitation generates high energy electrons, building up luminescent states until those electrons lose their kinetic energies, giving rise to the formation of local hot spots in the gallium oxide crystals.  相似文献   

13.
The results of comparative luminescence investigation of natural and synthetic BeO crystals are presented. Time-resolved luminescence (2.5–8 eV) and luminescence excitation spectra, and the kinetics of glow decay were measured using ultraviolet-vacuum-ultraviolet (VUV) synchrotron radiation (5–22 eV) or x-radiation (50–620 eV or 3–62 keV) ranges. X-ray and thermostimulated luminescence of natural BeO crystals were compared to the glow of additively colored synthetic crystals. The characteristic luminescence of F and F + centers was found in natural crystals. In synthetic crystals similar luminescence is observed only after additive or radiation coloration by virtue of the creation of F and F + centers on anion vacancies. The defects found in the crystal lattice of a natural BeO crystal testify to the degree of mineral metamictization of the given deposit.  相似文献   

14.
Luminescence and excitation spectra of doped LiF and NaF crystals are studied by time-resolved optical and luminescent vacuum ultraviolet (VUV) spectroscopy (2–40 eV energy range, T=10–295 K) with the use of synchrotron radiation of the X-ray and the VUV ranges and pulsed electron beams. Spectral kinetic parameters of luminescence and energies of excited states of U6+ ions are determined. The dominant role of the electron-hole mechanism for energy transfer to impurity centers is established. The effect of multiplication of electronic excitations is clearly manifested for E > 25 eV in NaF:U, Cu crystals and determines their high scintillation yield (137% relative to Tl:CsI when detected in the current regime).  相似文献   

15.
The results of a study of thermostimulated luminescence and recombination processes in pure and impure single crystals of BeO are reported. The origin of the trapping and recombination centers, their parameters (activation energies, frequency factors), the recombination schemes and the TL spectra were determined. It was shown that, in the BeO single crystals during electron and hole recombinations, the excitation of the intrinsic luminescence band at 4.9 eV proceeds and its characteristics inherit no properties from the recombination centers.  相似文献   

16.
The short-wave transmission spectrum of Na0.4Lu0.6F2.2 with the visible/ultraviolet transmission edge of 8 eV was studied. Absorption spectra of the 4f—5d transitions of the Ce3+ ion in the region of 4–8 eV were studied in Ce3+-doped Na0.4Lu0.6F2.2 single crystals. Luminescence spectra in the ultraviolet and visible spectral regions, luminescence decay kinetics and reflection and luminescence excitation spectra in the visible/ultraviolet and ultraviolet regions (4–20 eV) were investigated at helium and room temperatures.  相似文献   

17.
A complex investigation of the dynamics of electronic excitations in nonlinear optical crystals of ammonium dihydrophosphate NH4H2PO4 was performed using low-temperature vacuum UV luminescence spectroscopy with time resolution upon selective photoexcitation by synchrotron radiation. Data on the photoluminescence decay kinetics, time-resolved photoluminescence spectra (2–6.2 eV), and time-resolved photoluminescence excitation spectra (4–24 eV) were obtained for the first time for NH4H2PO4 crystals at 8 K. It is ascertained that the photoluminescence of NH4H2PO4 crystals in the vicinity of 4.7 eV has intrinsic character due to the radiative annihilation of self-trapped excitons. Possible channels of generation and decay of relaxed and unrelaxed electronic excitations in NH4H2PO4 crystals are discussed.  相似文献   

18.
The spectral-kinetic characteristics of a ZnO:Ga single crystal upon excitation in the vacuum UV region have been studied. At a temperature of 8 K, the exciton luminescence line peaking at 3.356 eV has an extremely small half-width (7.2 meV) and a short decay time (360 ps). In the visible range, a wide luminescence band peaking at ~2.1 eV with a long luminescence time at 8 K and a decay time in the nanosecond range at 300 K is observed. The luminescence excitation spectra of ZnO:Ga have been measured in the range of 4–12.5 eV.  相似文献   

19.
This paper reports on a study of the dynamics of electronic excitations in KBe2BO3F2 (KBBF) crystals by low-temperature luminescent vacuum ultraviolet spectroscopy with nanosecond time resolution under photoexcitation by synchrotron radiation. The first data have been obtained on the kinetics of photoluminescence (PL) decay, time-resolved PL spectra, time-resolved PL excitation spectra, and reflection spectra at 7 K; the estimation has been performed for the band gap E g = 10.6−11.0 eV; the predominantly excitonic mechanism for PL excitation at 3.88 eV has been identified; and defect luminescence bands at 3.03 and 4.30 eV have been revealed. The channels of generation and decay of electronic excitations in KBBF crystals have been discussed.  相似文献   

20.

The transient absorption spectra and kinetics were studied for undoped, lead doped and high purity SrTiO 3 single crystals. The pulsed electron beam induced transient absorption is studied in all crystals. The strong absorption at 0.8 v eV was observed only in high purity SrTiO 3 . This absorption is suggested to arise from intrinsic electron polaron. The bound electron polarons are likely responsible for absorption band at 1.4 v eV. The main luminescence band under excitation pulse is observed at 2.75 v eV. The luminescence decay is faster than that of transient absorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号