首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three different gases (nitrogen (N2), oxygen (O2) and argon (Ar)) were used as background gases during the growth of pulsed laser deposition (PLD) Y2SiO5:Ce thin films. A Krypton fluoride laser (KrF), 248 nm was used for the PLD of the films on silicon (Si) (1 0 0) substrates. The effect of the background gases on the surface morphology, crystal growth and luminescent properties were investigated. All the experimental parameters, the gas pressure (455 mT), the substrate temperature (600 °C), the pulse frequency (8 Hz), the number of pulses (4000) and the laser fluence (1.6±0.2) J/cm2 were kept constant. The only parameter that was changed during the deposition was the ambient gas species. The surface morphology and average particle sizes were monitored with scanning electron microscopy (SEM) and atomic force microscopy (AFM). X-ray diffraction (XRD) and Auger electron spectroscopy (AES) were used to determine the crystal structure and composition, respectively. Cathodo- (CL) and photoluminescence (PL) were used to measure the luminescent intensities for the different phosphor thin films. The nature of the particles, ablated on the substrate, is related to the collisions between the ejected particles and the ambient gas particles. The CL and PL intensities also depend on the particle sizes. A 144 h (coulomb dose of 1.4×104 C cm−2) electron degradation study on the thin films ablated in the Ar gas environment resulted in a decrease in the main CL intensity peak at 440 nm and to the development of a new very broad luminescent peak spectra ranging from 400 to 850 nm due to the growth of a SiO2 layer on the surface.  相似文献   

2.
The photoluminescence spectra of InAs quantum dots (QDs) embedded into four types of InxGa1−xAs/GaAs (x = 0.10, 0.15, 0.20 and 0.25) multi quantum well MBE structures have been investigated at 300 K in dependence on the QD position on the wafer. PL mapping was performed with 325 nm HeCd laser (35 mW) focused down to 200 μm (110 W/cm2) as the excitation source. The structures with x = 0.15 In/Ga composition in the InxGa1−xAs capping layer exhibited the maximum photoluminescence intensity. Strong inhomogeneity of the PL intensity is observed by mapping samples with the In/Ga composition of x ≥ 0.20-0.25. The reduction of the PL intensity is accompanied by a gradual “blue” shift of the luminescence maximum at 300 K as follows from the quantum dot PL mapping. The mechanism of this effect has been analyzed. PL peak shifts versus capping layer composition are discussed as well.  相似文献   

3.
A novel multi-wavelength erbium-doped fiber laser operating in C-band is proposed and successfully demonstrated. The wavelength interval between the wavelengths is about 0.22 nm. The 3 dB bandwidth of the laser is about 0.012 nm, and the output power reaches 4.8 mW. By using a high birefringence fiber ring mirror (HiBi-FLM) and a tunable FBG, the laser realizes switchable and tunable characteristic. The mode hopping can be effectively prevented. Moreover, this laser can improve wavelength stability significantly by taking advantage of an un-pumped Er3+-doped fiber at the standing-wave section. The laser can operate in stable narrow-line-width with single-, dual-wavelength, and unstable triple-wavelength output at room temperature.  相似文献   

4.
Lead-niobium-germanate planar waveguides have been produced by pulsed laser deposition. The composition of the waveguides is found to be relatively weakly dependent on the laser fluence, while their surface morphology is affected dramatically. Smooth surfaces are obtained for a narrow fluence range centered at 2.0 J/cm2, while particulates having typical diameters of <0.5 μm or droplets with typical diameters of <10 μm are observed at lower and higher fluences, respectively. The refractive index of the waveguides increases with fluence up to 2.1 at 2.0 J/cm2, which is close to the value of the bulk glass, and remains constant at higher fluences. Propagation losses show instead a minimum (≈6.5 dB/cm) at 2.0 J/cm2. The characteristics of the ablation process that leads to the ejection of solid particulates or molten droplets as well as the increase of the waveguides density on increasing the fluence are discussed to be responsible for the observed optical behavior.  相似文献   

5.
The laser-induced backside wet etching (LIBWE) is an advanced laser processing method used for structuring transparent materials. LIBWE with nanosecond laser pulses has been successfully demonstrated for various materials, e.g. oxides (fused silica, sapphire) or fluorides (CaF2, MgF2), and applied for the fabrication of microstructures. In the present study, LIBWE of fused silica with mode-locked picosecond (tp = 10 ps) lasers at UV wavelengths (λ1 = 355 nm and λ2 = 266 nm) using a (pyrene) toluene solution was demonstrated for the first time. The influence of the experimental parameters, such as laser fluence, pulse number, and absorbing liquid, on the etch rate and the resulting surface morphology were investigated. The etch rate grew linearly with the laser fluence in the low and in the high fluence range with different slopes. Incubation at low pulse numbers as well as a nearly constant etch rate after a specific pulse number for example were observed. Additionally, the etch rate depended on the absorbing liquid used; whereas the higher absorption of the admixture of pyrene in the used toluene enhances the etch rate and decreases the threshold fluence. With a λ1 = 266 nm laser set-up, an exceptionally smooth surface in the etch pits was achieved. For both wavelengths (λ1 = 266 nm and λ2 = 355 nm), LIPSS (laser-induced periodic surface structures) formation was observed, especially at laser fluences near the thresholds of 170 and 120 mJ/cm2, respectively.  相似文献   

6.
YVO4:Sm3+ films were deposited on Al2O3 (0 0 0 1) substrates at various oxygen pressures changing from 13.3 to 46.6 Pa by using the pulsed laser deposition method. The crystallinity and surface morphology of these films were investigated by means of X-ray diffraction (XRD) and atomic force microscopy (AFM), respectively. The XRD pattern confirmed that YVO4:Sm3+ film has zircon structure and the AFM study revealed that the films consist of homogeneous grains ranging from 100 to 400 nm. The room temperature photoluminescence (PL) spectra showed that the emitted radiation was dominated by a reddish-orange emission peak at 602 nm radiating from the transition of (4G5/26H7/2). The crystallinity, surface morphology, and photoluminescence spectra of thin-film phosphors were highly dependent on the deposition conditions, in particular, the substrate temperature. The surface roughness and photoluminescence intensity of these films showed similar behavior as a function of oxygen pressure.  相似文献   

7.
Nanostructures based on iron oxides in the form of thin films were synthesized while laser chemical vapor deposition (LCVD) of elements from iron carbonyl vapors (Fe(CO)5) under the action of Ar+ laser radiation (λL = 488 nm) on the Si substrate surface with power density about 102 W/cm2 and vapor pressure 666 Pa. Analysis of surface morphology and relief of the deposited films was carried out with scanning electron microscopy (SEM) and atomic force microscopy (AFM). This analysis demonstrated their cluster structure with average size no more than 100 nm. It was found out that the thicker the deposited film, the larger sizes of clusters with more oxides of higher oxidized phases were formed. The film thickness (d) was 10 and 28 nm. The deposited films exhibited semiconductor properties in the range 170-340 K which were stipulated by oxide content with different oxidized phases. The width of the band gap Eg depends on oxide content in the deposited film and was varied in the range 0.30-0.64 eV at an electrical field of 1.6 × 103 V/m. The band gap Eg was varied in the range 0.46-0.58 eV at an electrical field of 45 V/m. The band gap which is stipulated by impurities in iron oxides Ei was varied in the range 0.009-0.026 eV at an electrical field of 1.6 × 103 V/m and was varied in the range 0-0.16 eV at an electrical field 45 V/m. These narrow band gap semiconductor thin films displayed of the quantum dimensional effect.  相似文献   

8.
In this paper, we investigated the mechanism of crystallization induced by femtosecond laser irradiation for an amorphous Si (a-Si) thin layer on a crystalline Si (c-Si) substrate. The fundamental, SHG, THG wavelength of a Ti:Sapphire laser was used for the crystallization process. To investigate the processed areas we performed Laser Scanning Microscopy (LSM), Transmission Electron Microscopy (TEM) and Imaging Pump-Probe measurements. Except for 267 nm femtosecond laser irradiation, the crystallization occurred well. The threshold fluences for the crystallization using 800 nm and 400 nm femtosecond laser irradiations were 100 mJ/cm2 and 30 mJ/cm2, respectively. TEM observation revealed that the crystallization occurred by epitaxial growth from the boundary surface between the a-Si layer and c-Si substrate. The melting depths estimated by Imaging Pump-Probe measurements became shallower when the shorter wavelength was used.  相似文献   

9.
Aligned carbon nanotube/carbon (Acnt/C) nanocomposites have been fabricated by densifying an Acnt preform with chemical vapour infiltration technology. Microstructure observations show that pyrocarbon in Acnt/C was mainly rough lamella type while pyrocarbon in carbon fiber reinforced carbon matrix (C/C) composites was typically smooth lamella type in spite of the same process. The thermal conductivity of these Acnt/C nanocomposites is about 4 times that of C/C composites. Their electrical conductivity of Acnt/C nanocomposites was anisotropic, i.e. approximately 1.61×104 Ω−1 m−1 and 5.68×103 Ω−1 m−1 in the direction parallel and vertical to the aligned carbon nanotubes, respectively.  相似文献   

10.
This paper reports on the absorption, visible and near-infrared luminescence properties of Nd3+, Er3+, Er3+/2Yb3+, and Tm3+ doped oxyfluoride aluminosilicate glasses. From the measured absorption spectra, Judd-Ofelt (J-O) intensity parameters (Ω2, Ω4 and Ω6) have been calculated for all the studied ions. Decay lifetime curves were measured for the visible emissions of Er3+ (558 nm, green), and Tm3+ (650 and 795 nm), respectively. The near infrared emission spectrum of Nd3+ doped glass has shown full width at half maximum (FWHM) around 45 nm (for the 4F3/24I9/2 transition), 45 nm (for the 4F3/24I11/2 transition), and 60 nm (for the 4F3/24I13/2 transition), respectively, with 800 nm laser diode (LD) excitation. For Er3+, and Er3+/2Yb3+ co-doped glasses, the characteristic near infrared emission bands were spectrally centered at 1532 and 1544 nm, respectively, with 980 nm laser diode excitation, exhibiting full width at half maximum around 50 and 90 nm for the erbium 4I13/24I15/2 transition. The measured maximum decay times of 4I13/24I15/2 transition (at wavelength 1532 and 1544 nm) are about 5.280 and 5.719 ms for 1Er3+ and 1Er3+/2Yb3+ (mol%) co-doped glasses, respectively. The maximum stimulated emission cross sections for 4I13/24I15/2 transition of Er3+ and Er3+/Yb3+ are 10.81×10−21 and 5.723×10-21 cm2. These glasses with better thermal stability, bright visible emissions and broad near-infrared emissions should have potential applications in broadly tunable laser sources, interesting optical luminescent materials and broadband optical amplification at low-loss telecommunication windows.  相似文献   

11.
Femtosecond pulsed laser ablation (τ = 120 fs, λ = 800 nm, repetition rate = 1 kHz) of thin diamond-like carbon (DLC) films on silicon was conducted in air using a direct focusing technique for estimating ablation threshold and investigating the influence of ablation parameter on the morphological features of ablated regions. The single-pulse ablation threshold estimated by two different methods were ?th(1) = 2.43 and 2.51 J/cm2. The morphological changes were evaluated by means of scanning electron microscopy. A comparison with picosecond pulsed laser ablation shows lower threshold and reduced collateral thermal damage.  相似文献   

12.
The triangular-shaped Au/ZnO nanoparticle arrays were fabricated on fused quartz substrate using nanosphere lithography. The structural characterization of the Au/ZnO nanoparticle arrays was investigated by atomic force microscopy. The absorption peak due to the surface plasmon resonance of Au particles at the wavelength of about 570 nm was observed. The nonlinear optical properties of the nanoparticle arrays were measured using the z-scan method at a wavelength of 532 nm with pulse duration of 10 ns. The real and imaginary part of third-order nonlinear optical susceptibility, Re χ(3) and Im χ(3), were determined to be 1.15 × 10−6 and −5.36 × 10−7 esu, respectively. The results show that the Au/ZnO nanoparticle arrays have great potential for future optical devices.  相似文献   

13.
Spectroscopic measurements in the UV/VIS region show reduced transmission through laser-induced backside wet etching (LIBWE) of fused silica. Absorption coefficients of up to 105 cm−1 were calculated from the transmission measurements for a solid surface layer of about 50 nm. The temperatures near the interface caused by laser pulse absorption, which were analytically calculated using a new thermal model considering interface and liquid volume absorption, can reach 104 K at typical laser fluences. The high absorption coefficients and the extreme temperatures give evidence for an ablation-like process that is involved in the LIBWE process causing the etching of the modified near-surface region. The confinement of the ablation/etching process to the modified near-surface material region can account for the low etch rates observed in comparison to front-side ablation.  相似文献   

14.
The plasma produced by laser ablation of a graphite target was studied by means of optical emission spectroscopy and a Langmuir planar probe. Laser ablation was performed using a Nd:YAG laser with emission at the fundamental line with pulse length of 28 ns. In this work, we report the behavior of the mean kinetic energy of plasma ions and the plasma density, as a function of the laser fluence (J/cm2), and the target to probe (substrate) distance. The characterized regimes were employed to deposit amorphous carbon at different values of kinetic energy of the ions and plasma density. The mean kinetic energy of the ions could be changed from 40 to 300 eV, and the plasma density could be varied from 1 × 1012 to 7 × 1013 cm−3. The main emitting species were C+ (283.66, 290.6, 299.2 and 426.65 nm) and C++ (406.89 and 418.66 nm) with the C+ (426.65 nm) being the most intense and that which persisted for the longest times. Different combinations of the plasma parameters yield amorphous carbon with different structures. Low levels (about 40 eV) of ion energy produce graphitic materials, while medium levels (about 200 eV) required the highest plasma densities in order to increase the CC sp3 bonding content and therefore the hardness of the films. The structure of the material was studied by means of Raman spectroscopy, and the hardness and elastic modulus by depth sensitive nanoindentation.  相似文献   

15.
In this study, SrAl2O4:Eu2+,Dy3+ thin film phosphors were deposited on Si (1 0 0) substrates using the pulsed laser deposition (PLD) technique. The films were deposited at different substrate temperatures in the range of 40-700 °C. The structure, morphology and topography of the films were determined by using X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). Photoluminescence (PL) data was collected in air at room temperature using a 325 nm He-Cd laser as an excitation source. The PL spectra of all the films were characterized by green phosphorescent photoluminescence at ∼530 nm. This emission was attributed to 4f65d1→4f7 transition of Eu2+. The highest PL intensity was observed from the films deposited at a substrate temperature of 400 °C. The effects of varying substrate temperature on the PL intensity were discussed.  相似文献   

16.
Nanosecond (∼100 ns) pulsed (10 Hz) Nd:YAG laser operating at the wavelength (λ) of 1064 nm with pulse energies of 0.16-1.24 mJ/cm2 has irradiated 10Sm2O3·40BaO·50B2O3 glass. It is demonstrated for the first time that the structural modification resulting the large decease (∼3.5%) in the refractive index is induced by the irradiation of YAG laser with λ=1064 nm. The lines with refractive index changes are written in the deep inside of 100-1000 μm depths by scanning laser. The line width is 1-13 μm, depending on laser pulse energy and focused beam position. It is proposed that the samarium atom heat processing is a novel technique for inducing structural modification (refractive index change) in the deep interior of glass.  相似文献   

17.
Single crystal fibers of Ce3+ doped SrAl2O4 and CaAl4O7 were prepared through the laser heated pedestal growth method. Sites dependent Ce3+ emissions were found at 385 nm (427 nm) and 420 nm (325 nm) in SrAl2O4 and CaAl4O7 hosts, respectively. The Ce3+ emissions at 385 nm and 420 nm in the two hosts exhibited strong afterglows. They could persist for more than 10 h. The long persistence and sites dependence of Ce3+ emissions were originated from charge compensation of doping Ce3+ into divalent cation sites. The lifetimes of Ce3+ emissions in both hosts were found to depend on the laser excitation wavelengths. With 266 nm laser excitation, Ce3+ 5d electrons were delocalized into the host's conduction band, resulting in a prolonged decay time. The 355 nm laser excitation did not delocalize the 5d electrons and hence the measured lifetimes were the intrinsic Ce3+ emission lifetimes that were 17 and 35.5 ns in SrAl2O4 and CaAl4O7 hosts, respectively. The prolonged Ce3+ emission lifetime on 266 nm laser excitation was because of the relocalization of the 5d electrons from the host conduction band. The lifetimes of Ce3+ 5d electrons within the conduction band were found to be 34 and 44 ns in SrAl2O4 and CaAl4O7 hosts, respectively.  相似文献   

18.
Ceramic components manufacturing by selective laser sintering   总被引:2,自引:0,他引:2  
In the present paper, technology of selective laser sintering/melting is applied to manufacture net shaped objects from pure yttria-zirconia powders. Experiments are carried out on Phenix Systems PM100 machine with 50 W fibre laser. Powder is spread by a roller over the surface of 100 mm diameter alumina cylinder. Design of experiments is applied to identify influent process parameters (powder characteristics, powder layering and laser manufacturing strategy) to obtain high-quality ceramic components (density and micro-structure).The influence of the yttria-zirconia particle size and morphology onto powder layering process is analysed. The influence of the powder layer thickness on laser sintering/melting is studied for different laser beam velocity V (V = 1250-2000 mm/s), defocalisation (−6 to 12 mm), distance between two neighbour melted lines (so-called “vectors”) (20-40 μm), vector length and temperature in the furnace. The powder bed density before laser sintering/melting also has significant influence on the manufactured samples density.Different manufacturing strategies are applied and compared: (a) different laser beam scanning paths to fill the sliced surfaces of the manufactured object, (b) variation of vector length (c) different strategies of powder layering, (d) temperature in the furnace and (e) post heat treatment in conventional furnace. Performance and limitations of different strategies are analysed applying the following criteria: geometrical accuracy of the manufactured samples, porosity. The process stability is proved by fabrication of 1 cm3 volume cube.  相似文献   

19.
Zinc oxide (ZnO) thin films were deposited on the gallium nitride (GaN) and sapphire (Al2O3) substrates by pulsed laser deposition (PLD) without using any metal catalyst. The experiment was carried out at three different laser wavelengths of Nd:YAG laser (λ = 1064 nm, λ = 532 nm) and KrF excimer laser (λ = 248 nm). The ZnO films grown at λ = 532 nm revealed the presence of ZnO nanorods and microrods. The diameter of the rods varies from 250 nm to 2 μm and the length varies between 9 and 22 μm. The scanning electron microscopy (SEM) images of the rods revealed the absence of frozen balls at the tip of the ZnO rods. The growth of ZnO rods has been explained by vapor-solid (V-S) mechanism. The origin of growth of ZnO rods has been attributed to the ejection of micrometric and sub-micrometric sized particulates from the ZnO target. The ZnO films grown at λ = 1064 nm and λ = 248 nm do not show the rod like morphology. X-ray photoelectron spectroscopy (XPS) has not shown the presence of any impurity except zinc and oxygen.  相似文献   

20.
Formation of self-assembled InAs 3D islands on GaAs (1 1 0) substrate by metal organic vapor phase epitaxy has been investigated. Relatively uniform InAs islands with an average areal density of 109 cm−2are formed at 400 ° C using a thin InGaAs strain reducing (SR) layer. No island formation is observed without the SR layer. Island growth on GaAs (1 1 0) is found to require a significantly lower growth temperature compared to the more conventional growth on GaAs (1 0 0) substrates. In addition, the island height is observed to depend only weakly on the growth temperature and to be almost independent of the V/III ratio and growth rate. Low-temperature photoluminescence at 1.22 eV is obtained from the overgrown islands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号