首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diamond-like carbon (DLC) is an attractive biomedical material due to its high inertness and excellent mechanical properties. In this study, DLC films were fabricated on Ti6Al4V and Si(1 0 0) substrates at room temperature by pulsed vacuum arc plasma deposition. By changing the argon flow from 0 to 13 sccm during deposition, the effects of argon flow on the characteristics of the DLC films were systematically examined to correlate to the blood compatibility. The microstructure and mechanical properties of the films were investigated using Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) surface analysis, a nano-indenter and pin-on-disk tribometer. The blood compatibility of the films was evaluated using in vitro platelet adhesion investigation, and the quantity and morphology of the adherent platelets was investigated employing optical microscopy and scanning electron microscopy.The Raman spectroscopy results showed a decreasing sp3 fraction (an increasing trend in ID/IG ratio) with increasing argon flow from 0 to 13 sccm. The sp3:sp2 ratio of the films was evaluated from the deconvoluted XPS spectra. We found that the sp3 fraction decreased as the argon flow was increased from 0 to 13 sccm, which is consistent with the results of the Raman spectra. The mechanical properties results confirmed the decreasing sp3 content with increasing argon flow. The Raman D-band to G-band intensity ratio increased and the platelet adhesion behavior became better with higher flow. This implies that the blood compatibility of the DLC films is influenced by the sp3:sp2 ratio. DLC films deposited on titanium alloys have high wear resistance, low friction and good adhesion.  相似文献   

2.
The hydrogenated diamond‐like carbon (DLCH) film with 1‐µm thickness is deposited by direct hydrocarbon gas ion beam method on silicon wafer and annealed at 400 °C. Detailed Raman spectra feature are fitted from nine sets of different peak fitting functions, including Gaussian, Lorentzian and Breit‐Wigner‐Fano (BWF) functions. These fitting results obtained from a two‐peak combination show some specific variances on the G peak position, FWHMG and ID/IG ratio for as‐deposited and as‐annealed DLCH films. The most popular two‐peak fitting method with full Gaussian function tends to exhibit a higher ratio of the G peak position shift and higher ID/IG ratio than others fitting methods, the drastic difference among the most popular G (G) & G (D) and B (G) & L (D) schemes also have brought out in ID/IG ratio. However, for a more complex four‐peak Gaussian function fitting Raman spectra, the ID/IG ratio is close to that of a two‐peak fitting function with a mixture functions of BWF (G) and L (D). Furthermore, a series of systematic peak fitting procedures and comparisons of Raman spectra have been discussed in this study. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Cu2ZnSn(SxS1?x)4 (CZTSSe) thin films were prepared by annealing a stacked precursor prepared on Mo coated glass substrates by the sputtering technique. The stacked precursor thin films were prepared from Cu, SnS2, and ZnS targets at room temperature with stacking orders of Cu/SnS2/ZnS. The stacked precursor thin films were annealed using a tubular two zone furnace system under a mixed N2 (95%) + H2S (5%) + Se vaporization atmosphere at 580 °C for 2 h. The effects of different Se vaporization temperature from 250 °C to 500 °C on the structural, morphological, chemical, and optical properties of the CZTSSe thin films were investigated. X-ray diffraction patterns, Raman spectroscopy, and X-ray photoelectron spectroscopy results showed that the annealed thin films had a single kesterite crystal structure without a secondary phase. The 2θ angle position for the peaks from the (112) plane in the annealed thin films decreased with increasing Se vaporization temperature. Energy dispersive X-ray results showed that the presence of Se in annealed thin films increased from 0 at% to 42.7 at% with increasing Se vaporization temperatures. UV–VIS spectroscopy results showed that the absorption coefficient of all the annealed thin films was over 104 cm?1 and that the optical band gap energy decreased from 1.5 eV to 1.05 eV with increasing Se vaporization temperature.  相似文献   

4.
Diamond-like carbon (DLC) films were deposited on Si (1 0 0) substrate using a low energy (219 J) repetitive (1 Hz) miniature plasma focus device. DLC thin film samples were deposited using 10, 20, 50, 100 and 200 focus shots with hydrogen as filling gas at 0.25 mbar. The deposited samples were analyzed by XRD, Raman Spectroscopy, SEM and XPS. XRD results exhibited the diffraction peaks related to SiO2, carbon and SiC. Raman studies verified the formation amorphous carbon with D and G peaks. Corresponding variation in the line width (FWHM) of the D and G positions along with change in intensity ratio (ID/IG) in DLC films was investigated as a function of number of deposition shots. XPS confirmed the formation sp2 (graphite like) and sp3 (diamond like) carbon. The cross-sectional SEM images establish the 220 W repetitive miniature plasma focus device as the high deposition rate facility for DLC with average deposition rate of about 250 nm/min.  相似文献   

5.
A series of graphitized carbon materials, produced by the pyrolysis of an anthracene‐based coke at temperatures ranging from 1600 to 2900 °C, were studied by Raman microspectroscopy to assess the applicability of this technique to the particular case of polished carbon materials. The polishing process was shown to change significantly the first‐order Raman spectra (D band intensity increase) and therefore to induce unacceptable errors in the characterization of the intrinsic structure of these materials. The deconvolution of Raman spectra, related to the unpolished graphitized carbons at varying temperatures, highlighted a linear relationship between the intensity ratio ID/IG and the G band width. Thus, as the latter appears to be insensitive to the polishing, we highly recommend using it for a reliable assessment of the intrinsic structural disorder of polished carbon materials. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
We report the Raman analysis of both as‐deposited and annealed amorphous silicon ruthenium thin films embedded with nanocrystals. In the Raman spectra of as‐deposited films, variations of TO peak indicate a short‐range disorder of a‐Si network with an increase of Ru concentration. The substitutional Ru atoms lower the concentration of Si―Si bonds and suppress the intensity of TO peak, but have less effect on TA, LA and LO peaks. In the Raman spectra of annealed films, characteristic parameters confirm the upgrade of a‐Si network at a low annealing temperature and the emergence of both ruthenium silicide and silicon nanocrystals at 700 °C. Although ruthenium silicide nanocrystals present no Raman peaks in the Raman spectra of as‐deposited samples, the non‐linear variations of intensity ratios ILA + LO/ITO and ITA/ITO still suggest their existence, and these nanocrystals are subsequently verified by high‐resolution transmission electron microscopy. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Carbon nitride thin films were obtained through plasma assisted physical vapor deposition technique by pulsed arc, varying the substrate temperature and investigating the influence of this parameter on the films hemocompatibility. For obtaining approaches of blood compatibility, environmental scanning electron microscopy (ESEM) was used in order to study the platelets adherence and their morphology. Moreover, the elemental chemical composition was determined by using energy dispersive spectroscopy (EDS), finding C, N and O. The coatings hemocompatibility was evaluated by in vitro thrombogenicity test, whose results were correlated with the microstructure and roughness of the films obtained.During the films growth process, the substrate temperature was varied, obtaining coatings under different temperatures, room temperature (Troom), 100 °C, 150 °C and 200 °C. Parameters as interelectrodic distance, voltage, work pressure and number of discharges, were remained constant. By EDS, carbon and nitrogen were found in the films.Visible Raman spectroscopy was used, and it revealed an amorphous lattice, with graphitic process as the substrate temperature was increased. However, at a critical temperature of 150 °C, this tendency was broken, and the film became more amorphous. This film showed the lowest roughness, 2 ± 1 nm. This last characteristic favored the films hemocompatibility. Also, it was demonstrated that the blood compatibility of carbon nitride films obtained were affected by the ID/IG or sp3/sp2 ratio and not by the absolute sp3 or sp2 concentration.  相似文献   

8.
a-C:H films were prepared by middle frequency plasma chemical vapor deposition (MF-PCVD) on silicon substrates from two hydrocarbon source gases, CH4 and a mixture of C2H2 + H2, at varying bias voltage amplitudes. Raman spectroscopy shows that the structure of the a-C:H films deposited from these two precursors is different. For the films deposited from CH4, the G peak position around 1520 cm−1 and the small intensity ratio of D peak to G peak (I(D)/I(G)) indicate that the C-C sp3 fraction in this film is about 20 at.%. These films are diamond-like a-C:H films. For the films deposited from C2H2 + H2, the Raman results indicate that their structure is close to graphite-like amorphous carbon. The hardness and elastic modulus of the films deposited from CH4 increase with increasing bias voltage, while a decrease of hardness and elastic modulus of the films deposited from a mixture of C2H2 + H2 with increasing bias voltage is observed.  相似文献   

9.
Zinc sulfide thin films were prepared on glass substrates at room temperature using a chemical bath deposition method. The obtained films were annealed at temperatures ranging from 100 to 500 °C in steps of 100 °C for 1 h. The films were characterized by X-ray diffraction (XRD), Raman spectroscopy, energy dispersive X-ray analysis (EDX), optical absorption spectra, and electrical measurements. X-ray diffraction analysis indicates that the deposited films have an amorphous structure, but after being annealed at 500 °C, they change to slightly polycrystalline. The optical constants such as the refractive index (nr), the extinction coefficient (k), and the real (ε1) and imaginary (ε2) parts of the dielectric constant are calculated depending on the annealing temperature. Aside from the ohmic characteristics of the I-V curve, a nonlinear I-V curve owing to the Schottky contact is also found, and the barrier heights (?bn) for Au/n-ZnS and In/n-ZnS heterojunctions are calculated. The conductivity type was identified by the hot-probe technique.  相似文献   

10.
Carbon nitride (CNx) films were deposited from acetonitrile at low voltage (150-450 V) through electrodeposition. The films were characterized by atomic force microscopy (AFM), Raman spectroscopy and Fourier transform infrared (FT-IR) spectroscopy. AFM investigations revealed that the grain size was ∼200 nm and roughness was ∼10 nm. The films were found to be continuous and close packed. IR spectra revealed existence of strong sp3, sp2 type bonding and weak sp type carbon nitrogen bonds and these bonds were found to increase with voltage. The fraction of sp3-bonded species in the sample increased in low voltage range and after reaching maximum at 350 V, decreased for higher voltages. However, the concentration of sp2 CN ring structures in the film increased with increasing voltage. Also, the peak width decreased at low voltages reaching a minimum and increased thereafter. It was observed that the voltage dependent increase in the concentration of polymeric type sp2 CN (chain) structures was much more pronounced than that of graphitic type sp2 CN (ring) structures. Raman spectra showed the presence of both the D and G bands. The shift in the G band indicated the presence of nitrogen in the film. The ID/IG ratio was found to increase with the incorporation of nitrogen. Auger electron spectroscopy (AES) showed a clear increase in the nitrogen content with increase in the voltage. The formation of the film could be explained on the basis of dissociation of electrolyte under applied voltage.  相似文献   

11.
In this work, plasma enhanced chemical vapour deposition was used to prepare hydrogenated amorphous carbon films (a-C:H) on different substrates over a wide range of thickness. In order to observe clear substrate effect the films were produced under identical growth conditions. Raman and near edge X-ray absorption fine structure (NEXAFS) spectroscopies were employed to probe the chemical bonding of the films. For the films deposited on silicon substrates, the Raman ID/IG ratio and G-peak positions were constant for most thickness. For metallic and polymeric substrates, these parameters increased with film thickness, suggesting a change from a sp3-bonded hydrogenated structure to a more sp2 network, NEXAFS results also indicate a higher sp2 content of a-C:H films grown on metals than silicon. The metals, which are poor carbide precursors, gave carbon films with low adhesion, easily delaminated from the substrate. The delamination can be decreased/eliminated by deposition of a thin (∼10 nm) silicon layer on stainless steel substrates prior to a-C:H coatings. Additionally we noted the electrical resistivity decreased with thickness and higher dielectric breakdown strength for a-C:H on silicon substrate.  相似文献   

12.
We demonstrate that the quality of the as-grown single-walled carbon nanotubes (SWCNTs) can be effectively improved by the addition of the B ingredient in the Fe/MgO catalyst. The as-grown SWCNTs were characterized by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM) and Raman spectroscopy. The SWCNTs prepared by the pure Fe/MgO catalyst have relatively low graphite crystallinity and are coated by much amorphous carbon. The intensity ratio of the D- and G-bands (ID/IG) in Raman spectra is relatively high (0.098 for laser 532 nm and 0.075 for laser 785 nm). The SWCNTs grown from the Fe/MgO catalyst doped with 0.1 part of B have more regular graphite structure with little amorphous carbon. The ID/IG values reduced remarkably (0.041 for laser 532 nm and 0.040 for laser 785 nm). The effect would be attributed to the inhibitory action of the doped B on the formation of radical hydrocarbon species for the formation of SWCNTs.  相似文献   

13.
Carbon-based materials have been of great interest due to their potential application in cold cathodes for field emission displays and other vacuum microelectronic devices. Pyrolyzed polyaniline (PPANI) with N-doped nanostructures was prepared by pyrolysis of polyaniline at high temperature of 900 °C. The morphologies and microstructures were investigated by scanning electron microscopy, transmission electron microscopy, AFM, Raman spectroscopy, and X-ray photoelectron spectroscopy. It was found that there were sp2C-N and sp3C-N bonds between the nitrogen and the carbon atoms in the nanostructures of the PPANI obtained. The electron field emission investigations showed that the turn-on field and effective work function ?e of PPANI were 1.7 V/μm and 0.010 eV which were lower than N-doped amorphous carbon films obtained by other methods.  相似文献   

14.
The reduced graphene oxide (rGO) incorporated ZnO thin films were fabricated by dip-coating method. The Raman and FT-IR spectra of 0.075 wt% incorporated composite film showed reduction of GO in composite film. The transmittanceProd. Type: FTP spectra have shown that rGO incorporation increase the visible light absorption of ZnO thin film while the calculated band gaps of samples were decreased from 3.28 to 3.25 eV by increasing the rGO content. The linear trend of IV curve suggests an ohmic contact between ZnO and rGO. Besides, it was found that by increasing the rGO content, the electrical resistivity was decreased from 4.32×102 Ω cm for pure ZnO film to 2.4×101 Ω cm for 0.225 wt% rGO incorporated composite film. The composite photodetectors not only possessed a desirable UV photosensitivity, but also the response time of optimum sample containing 0.075 wt% rGO was reduced to about one-half of pure ZnO thin film. Also, the calculated signal to noise (SNR) showed that highly conductive rGO in composite thin films facilitate the carrier transportation by removing the trapping centers. The mechanism of photoresponsivity improvement of composite thin films was proposed by carrier transportation process.  相似文献   

15.
The graphitization index provided by X-ray diffraction (XRD) and Raman spectrometry for reticulated vitreous carbon (RVC) substrates, carbonized at different heat treatment temperatures (HTT), is investigated. A systematic study of the dependence between the disorder-induced D and G Raman bands is presented. The crystallite size La was obtained for both X-ray diffraction and Raman spectrometry techniques. Particularly, the validity for La determination, from Raman spectra, is pointed out comparing the commonly used formula based on peaks amplitude ratio (ID/IG) and the recent proposed equation that uses the integrated intensities of D and G bands. The results discrepancy is discussed taken into account the strong contribution of the line broadening presented in carbon materials heat treated below 2000 °C.  相似文献   

16.
采用PR650光谱光度计对高速沉积微晶硅薄膜的生长过程进行了在线监测研究,并对所对应的材料进行了Raman谱和红外吸收谱(FTIR)的测试.结果表明:能反映材料晶化程度的I[SiH*/I[Hβ*比值在沉积时间为100 s之内有下降的趋势,且反应气体总流量Tfl越小下降趋势越明显,这与拉曼散射光谱对材料的结构测试结果一致;沉积5 min时I 关键词: 高速沉积 微晶硅薄膜 电子温度  相似文献   

17.
Hydrogenated amorphous carbon (a-C:H) is a state-of-the-art material with established properties such as high mechanical resistance, low friction, and chemical inertness. In this work, a-C:H thin films were deposited by plasma-assisted chemical vapor deposition. The deposition process was enhanced by electrostatic confinement that leads to decrease the working pressure achieving relative high deposition rates. The a-C:H thin films were characterized by elastic recoil detection analysis, Rutherford backscattering spectroscopy, scanning electron microscopy, Raman spectroscopy, and nanoindentation measurements. The hydrogen content and hardness of a-C:H thin films vary from 30 to 45 at% and from 5 to 15 GPa, respectively. The hardness of a-C:H thin films shows a maximum as a function of the working pressure and is linearly increased with the shifting of the G-peak position and I D/I G ratio. The structure of a-C:H thin films suffers a clustering process at low working pressures. A physical model is proposed to estimate the mean ion energy of carbonaceous species arriving at the surface of a-C:H thin films as a function of processing parameters as pressure and voltage and by considering fundamentals scattering events between ion species and neutral molecules and atoms.  相似文献   

18.
We apply Raman scattering spectroscopy to study the nature of carbon inclusions in Al2O3 and (HfO2) x (Al2O3)1 ? x films deposited using volatile complex compounds. Raman spectra of the films under investigation contain D and G vibrational modes, which indicate that carbon clusters of the sp 2 configuration tend to form in the films. We estimate the size of clusters from the integrated intensity ratio I D /I G and find it to be in the range of 14–20 Å. The content of hydrogen in carbon clusters is calculated from the height of the photoluminescence pedestal and is found to vary from 14 to 30 at % depending on the regime of the film’s synthesis.  相似文献   

19.
潘金平  胡晓君  陆利平  印迟 《物理学报》2010,59(10):7410-7416
采用热丝化学气相沉积法制备B掺杂纳米金刚石薄膜,并对薄膜进行真空退火处理,系统研究了不同退火温度对B掺杂纳米金刚石薄膜的微结构和电化学性能的影响.结果表明,当退火温度升高到800 ℃后,薄膜的Raman谱图中由未退火时在1157,1346,1470,1555 cm-1处的4个峰转变为只有D峰和G峰,说明晶界上的氢大量解吸附量减少,并且D峰和G峰的积分强度比ID/IG值变为最小,即sp2相团簇  相似文献   

20.
The growth of multiwalled carbon nanotubes (MWNTs) was successfully achieved in the channels of three dimensional (3D) iron loaded mesoporous matrices (KIT-6) by employing catalytic chemical vapour deposition (CCVD) technique. The synthesised MWNTs, which were characterised by SEM, TEM and Raman spectroscopy, consist of thick graphene layers of about 10 nm composed of 29 graphene sheets with inner and outer diameter of ∼17 nm and ∼37 nm, respectively. The Raman spectrum showed the formation of well-graphitised MWNTs with significantly higher IG/ID ratio of 1.47 compared to commercial MWNTs. Comparatively, 2 wt% Fe loaded KIT-6 material produced a better yield of 91%, which is also highest compared with the report of MWNTs synthesis using mesoporous materials reported so far.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号