首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pulsed laser deposition (PLD) technique is used to deposit undoped ZnO thin films on glass substrates at 150 °C with different oxygen pressures of 40, 80, 100 and 150 mTorr. X-ray diffraction (XRD) and atomic force microscopy (AFM) studies indicated that the obtained ZnO thin films were hexagonal wurtzite-type structures with strong (0 0 2) c-axis orientation. The relationship between photoluminescence and the conductivity of the ZnO thin films grown by pulsed laser deposition at various oxygen pressures was also discussed. The intensity of the deep-level-emission (DLE) and conductivity generally increased as the oxygen pressure decreased. The intensity of DLE peak was generally proportional to the conductivity. The band gap energy values, determined from transmittance spectra, were around 3.30-3.34 eV, and decreased when the oxygen pressure increased.  相似文献   

2.
Pulsed laser deposition (PLD) method was used to obtain bioglass (BG) thin film coatings on titanium substrates. An UV excimer laser KrF* (λ = 248 nm, τ = 25 ns) was used for the multi-pulse irradiation of the BG targets with 57 or 61 wt.% SiO2 content (and Na2O-K2O-CaO-MgO-P2O5 oxides). The depositions were performed in oxygen atmosphere at 13 Pa and for substrates temperature of 400 °C. The PLD films displayed typical BG of 2-5 μm particulates nucleated on the film surface or embedded in. The PLD films stoichiometry was found to be the same as the targets. XRD spectra have shown, the glass coatings obtained, had an amorphous structure. One set of samples, deposited in the same conditions, were dipped in simulated body fluids (SBFs) and subsequently extracted one by one after several time intervals 1, 3, 7, 14 and 21 days. After washing in deionized water and drying, the surface morphology of the samples and theirs composition were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), IR spectroscopy (FTIR) and energy dispersive X-ray analysis (EDX). After 3-7 days the Si content substantially decreases in the coatings and PO43− maxima start to increase in FTIR spectra. The XRD spectra also confirm this evolution. After 14-21 days the XRD peaks show a crystallized fraction of the carbonated hydroxyapatite (HAP). The SEM micrographs show also significant changes of the films surface morphology. The coalescence of the BG droplets can be seen. The dissolution and growth processes could be assigned to the ionic exchange between BG and SBFs.  相似文献   

3.
Tungsten trioxide and titanium dioxide thin films were synthesised by pulsed laser deposition. We used for irradiations of oxide targets an UV KrF* (λ = 248 nm, τFWHM ≅ 20 ns, ν = 2 Hz) excimer laser source, at 2 J/cm2 incident fluence value. The experiments were performed in low oxygen pressure. The (0 0 1) SiO2 substrates were heated during the thin film deposition process at temperature values within the 300-500 °C range. The structure and crystalline status of the obtained oxide thin films were investigated by high resolution transmission electron microscopy. Our analyses show that the films are composed by nanoparticles with average diameters from a few to a few tens of nm. Moreover, the films deposited at substrate temperatures higher than 300 °C are crystalline. The tungsten trioxide films consist of a mixture of triclinic and monoclinic phases, while the titanium dioxide films structure corresponds to the tetragonal anatase phase. The oxide films average transmittance in the visible-infrared spectral range is higher than 80%, which makes them suitable for sensor applications.  相似文献   

4.
Silicon thin films have been prepared on sapphire substrates by pulsed laser deposition (PLD) technique. The films were deposited in vacuum from a silicon target at a base pressure of 10−6 mbar in the temperature range from 400 to 800 °C. A Q-switched Nd:YAG laser (1064 nm, 5 ns duration, 10 Hz) at a constant energy density of 2 J × cm−2 has been used. The influence of the substrate temperature on the structural, morphological and optical properties of the Si thin films was investigated.Spectral ellipsometry and atomic force microscopy (AFM) were used to study the thickness and the surface roughness of the deposited films. Surface roughness values measured by AFM and ellipsometry show the same tendency of increasing roughness with increased deposition temperature.  相似文献   

5.
Ca-doped LaMnO3 (LCMO) thin films have been successfully prepared on SrTiO3 (STO) and [(LaAlO3)0.3-(SrAlTaO6)0.7] (LSAT) substrates using the excimer laser assisted metal-organic deposition (ELAMOD) process. The crystallization and the epitaxial growth of the amorphous metal-organic LCMO thin films have been achieved using a KrF excimer laser irradiation while the substrates were kept at constant temperature of 500 °C. Epitaxial films were obtained using laser fluence in the interval of 50-120 mJ/cm2. The microstructure of the LCMO films was studied using cross-section transmission electron microscopy. High quality of LCMO films having smooth surfaces and sharp interfaces were obtained on both the STO and the LSAT substrates. The effect of the laser fluence on the temperature coefficient of resistance (TCR) was investigated. The largest values of TCR of the LCMO grown on the LSAT and the STO substrates of 8.3% K−1 and 7.46% K−1 were obtained at different laser fluence of 80 mJ/cm2 and 70 mJ/cm2, respectively.  相似文献   

6.
TiO2 and Pt doped TiO2 thin films were grown by pulsed laser deposition on 〈0 0 1〉 SiO2 substrates. The doped films were compared with undoped ones deposited in similar experimental conditions. An UV KrF* (λ = 248 nm, τFWHM ≅ 20 ns, ν = 2 Hz) excimer laser was used for the irradiation of the TiO2 or Pt doped TiO2 targets. The substrate temperatures were fixed during the growth of the thin films at values within the 300-500 °C range. The films’ surface morphology was investigated by atomic force microscopy and their crystalline quality by X-ray diffractometry. The corresponding transmission spectra were recorded with the aid of a double beam spectrophotometer in the spectral range of 400-1100 nm. No contaminants or Pt segregation were detected in the synthesized anatase phase TiO2 thin films composition. Titania crystallites growth inhibition was observed with the increase of the dopant concentration. The average optical transmittance in the visible-infrared spectral range of the films is higher than 85%, which makes them suitable for sensor applications.  相似文献   

7.
We report on the synthesis by pulsed laser deposition with a KrF* excimer laser source (λ = 248 nm, τ = 25 ns) of bioglass thin films of 6P57 and 6P61 types. Physiology, viability, and proliferation of human osteoblast cells were determined by quantitative in vitro tests performed by flow cytometry on primary osteoblasts cultured on pulsed laser deposited bioglasses. Both types of glass films proved to be appropriate mediums for cell survival and proliferation. In a parallel investigation, cell morphology and adhesion to the surface was studied by fluorescence microscopy and scanning electron microscopy. Strong bonds between the materials and cells were found in both cases, as osteoblast pseudopodes penetrated deep into the material. According to our observations, the 6P57 glass films were superior with respect to viability and proliferation performances.  相似文献   

8.
We report on the growth of terbium iron garnet (TbIG, Tb3Fe5O12) thin films having anomalously large coercivity and in-plane easy axis of magnetization. The TbIG thin films were prepared at room temperature (RT) on Pt/Si(1 0 0) substrates by pulsed laser deposition technique. The films deposited at RT were X-ray amorphous and do not show any magnetic order. Annealing of the RT deposited film at 900 °C resulted into fully textured (532) TbIG film. Atomic force microscopy and cross-sectional scanning electron microscopy studies of the TbIG films showed good surface quality with an average surface roughness of 5.0 nm and thickness of about 300 nm, respectively. The M-H loops measured at 20 K for TbIG films, exhibit about an order of magnitude enhancement in the coercivity value (Hc) than the single crystal. In-plane and out-of-plane M-H loops revealed that the easy axis of the magnetization lies within the film’s plane. In-plane magnetization combining with large Hc value of the TbIG thin film may be of scientific interest for the possible applications.  相似文献   

9.
Well crystallized and homogeneous LiFePO4/C (LFPO) thin films have been grown by pulsed laser deposition (PLD). The targets were prepared by the sol-gel process at 600 °C. The structure of the polycrystalline powders was analyzed with X-ray powder diffraction (XRD) data. The XRD patterns were indexed having a single phase olivine structure (Pnma). LFPO thin films have been deposited on three different substrates: aluminum (Al), stainless steel (SS) and silicon (Si) by pulsed laser deposition (PLD). The structure of the films was analyzed by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and atomic force microscopy (AFM). It is found that the crystallinity of the thin films depends on the substrate temperature which was set at 500 °C. When annealed treatments were used, secondary phases were found, so, one step depositions at 500 °C were made.Stainless steel is demonstrated to be the best choice to act as substrate for phosphate deposition. LiFePO4 thin films grown on stainless steel plates exhibited the presence of carbon, inducing a slight conductivity enhancement that makes these films promising candidates as one step produced cathodes in Li-ion microbatteries.  相似文献   

10.
We have grown lead iron niobate thin films with composition Pb(Fe1/2Nb1/2)O3 (PFN) on (0 0 1) SrTiO3 substrates by pulsed laser deposition. The influence of the deposition conditions on the phase purity was studied. Due to similar thermodynamic stability spaces, a pyrochlore phase often coexists with the PFN perovskite phase. By optimizing the kinetic parameters, we succeeded in identifying a deposition window which resulted in epitaxial perovskite-phase PFN thin films with no identifiable trace of impurity phases appearing in the X-ray diffractograms. PFN films having thicknesses between 20 and 200 nm were smooth and epitaxially oriented with the substrate and as demonstrated by RHEED streaks which were aligned with the substrate axes. X-ray diffraction showed that the films were completely c-axis oriented and of excellent crystalline quality with low mosaicity (X-ray rocking curve FWHM?0.09°). The surface roughness of thin films was also investigated by atomic force microscopy. The root-mean-square roughness varies between 0.9 nm for 50-nm-thick films to 16 nm for 100-nm-thick films. We also observe a correlation between grain size, surface roughness and film thickness.  相似文献   

11.
The synthesis by pulsed laser deposition technique of zinc oxide thin films suitable for gas sensing applications is herein reported. The ZnO targets were irradiated by an UV KrF* (λ = 248 nm, τFWHM ∼7 ns) excimer laser source, operated at 2.8 J/cm2 incident fluence value, whilst the substrates consisted of SiO2(0 0 1) wafers heated at 150 °C during the thin films growth process. The experiments were performed in an oxygen dynamic pressure of 10 Pa. Structural and optical properties of the thin films were investigated. The obtained results have demonstrated that the films are c-axis oriented. Their average transmission in the visible-infrared spectral region was found to be about 85%. The equivalent refractive indexes and extinction coefficients were very close to those of the tabulated reference values. Doping with 0.5% Au and coating with 100 pulses of Au clusters caused but a very slight decrease (with a few percent) of both transmission and refractive index values. The coatings with the most appropriate optical properties as waveguides have been selected and their behavior was tested for butane sensing.  相似文献   

12.
Zirconium dioxide thin films were deposited on 316L-stainless steel type substrates using DC unbalanced magnetron sputtering. The process parameter of this work was the target-to-substrate distance (dt-s), which was varied from 60 to 120 mm. The crystal structure and surface topography of zirconium dioxide thin films were characterized by X-ray diffraction (XRD) and atomic force microscopy (AFM). The results demonstrate that all of the ZrO2 thin films are composed monoclinic phase. The film sputtered at short dt-s (60 mm) shows a rather heterogeneous, uneven surface. The grain size, roughness, and thickness of thin films were decreased by increasing dt-s. The bioactivity was assessed by investigating the formation of hydroxyapatite (Ca10(PO4)6(OH)2) on the thin film surface soaked in simulated body fluids (SBF) for 7 days. XRD and scanning electron microscopy (SEM) were used to verify the formation of apatite layers on the samples. Bone-like apatites were formed on the surface of the ZrO2 thin film in SBF immersion experiments. A nanocrystalline hydroxyapatite (HA) with a particle size of 2-4 μm was deposited. Higher crystallinity of HA on the surface was observed when the distance dt-s increased to more than 80 mm. Therefore, it seems that a dt-s greater than 80 mm is an important sputtering condition for inducing HA on the zirconia film.  相似文献   

13.
We report the first successful deposition of type II cryoglobulin blood protein thin films by matrix assisted pulsed laser evaporation (MAPLE) using a KrF* excimer laser source (λ = 248 nm, τFWHM ≈ 20 ns) operated at a repetition rate of 10 Hz. We demonstrate by AFM and FTIR that MAPLE-deposited thin films consist of starting type II cryoglobulin only, maintaining its chemical structure and biological functionality, being properly collected and processed. The dependence on incident laser fluence of the induced surface morphology is presented. The presence of type II cryoglobulin was revealed as aggregates of globular material in the MAPLE-deposited thin films and confirmed by standard cryoglobulin tests.  相似文献   

14.
The synthesis of tungsten oxide films with large surface area is promising for gas sensing applications. Thin WOx films were obtained by radio-frequency assisted pulsed laser deposition (RF-PLD). A tungsten target was ablated at 700 and 900 Pa in reactive oxygen, or in a 50% mixed oxygen-helium atmosphere at the same total pressure values. Corning glass was used as substrate, at temperatures including 673, 773 and 873 K. Other deposition parameters such as laser fluence (4.5 J cm−2), laser wavelength (355 nm), radiofrequency power (150 W), target to substrate distance (4 cm), laser spot area (0.7 mm2), and number of laser shots (12,000) were kept fixed. The sensitivity on the deposition conditions of morphology, nanostructure, bond coordination, and roughness of the obtained films were analyzed by scanning and transmission electron microscopy, micro-Raman spectroscopy, and atomic force microscopy.  相似文献   

15.
The paper presents the fabrication and characterization of La0.65Sr0.35MnO3−δ (LSMO) polycrystalline thin films deposited directly on Si (1 0 0) substrates using pulsed laser deposition technique. Various deposition parameters like substrate temperature and oxygen partial pressure have been varied systematically to obtain stoichiometric, crack-free films with smooth surface morphology having nearly monodisperse grain size distribution. The substrate temperature variation from 600 to 800 °C had profound effects on the microstructure and topography of the deposited film, with optimum result being obtained at 700 °C. The variation of partial pressure of oxygen controls the deposition kinetics as well as the stoichiometry of the film in terms of oxygen vacancy, which influences the magnetic and electrical transport properties of the manganate films. The microstructure and crystallinity of the deposited films have been studied using X-ray diffraction, scanning electron microscopy and atomic force microscopy. A correlation between the oxygen stoichiometry and micro-structural and transport properties of the deposited films has been obtained.  相似文献   

16.
We report on the structural and optical properties of yttria stabilized zirconia (YSZ) thin films grown by pulsed laser deposition (PLD) technique and in situ crystallized at different substrate temperatures (Ts = 400 °C, 500 °C and 600 °C). Yttria-stabilized zirconia target of ∼1 in. diameter (∼95% density) was fabricated by solid state reaction method for thin film deposition by PLD. The YSZ thin films were grown on an optically polished quartz substrates and the deposition time was 30 min for all the films. XRD analysis shows cubic crystalline phase of YSZ films with preferred orientation along 〈1 1 1〉. The surface roughness was determined by AFM for the films deposited at different substrate temperatures. The nano-sized surface roughness is found to increase with the increase of deposition temperatures. For the optical analysis, a UV-vis-NIR spectrophotometer was used and the optical band gap of ∼5.7 eV was calculated from transmittance curves.  相似文献   

17.
The BCN thin films were produced by dual ion beam sputtering deposition (DIBSD). The influence of assisted ion energy on surface roughness and mechanical properties of BCN films were investigated. The surface roughness was determined by atomic force microscopy (AFM) and the mechanical properties of BCN firms were evaluated by nano-indentation in N2 gas. The composition, structure and chemical bonding of the BCN thin films were analyzed by using energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), laser Raman spectroscopy and Fourier transform infrared spectroscopy (FTIR). These films appeared as amorphous structure. As a result, the BCN films with the smoothest surface (Ra = 0.35 nm and Rp-v = 4.4 nm) and the highest nano-hardness of 30.1 GPa and elastic modulus of 232.6 GPa were obtained at 200 eV and 12 mA with N2:Ar = 1:1, and the chemical composition of this BCN film was 81 at.% B, 14 at.% C and 5 at.% N. Moreover, several bonding states such as B-N, B-C and C-N were observed in BCN thin films.  相似文献   

18.
Multilayered thin films of In2O3 and SnO2 have been deposited by conventional and RF plasma-assisted reactive pulsed laser ablation, with the aim to evaluate their behaviour as toxic gas sensors. The depositions have been carried out by a frequency doubled Nd-YAG laser (λ = 532 nm, τ = 7 ns) on Si(1 0 0) substrates, in O2 atmosphere. The thin films have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrical resistance measurements. A comparison of the electrical response of the simple (indium oxide, tin oxide) and multilayered oxides to toxic gas (nitric oxide, NO) has been performed. The influence on the structural and electrical properties of the deposition parameters, such as substrate temperature and RF power is reported.  相似文献   

19.
The development of laser techniques for the deposition of polymer and biomaterial thin films on solid surfaces in a controlled manner has attracted great attention during the last few years. Here we report the deposition of thin polymer films, namely Polyepichlorhydrin by pulsed laser deposition. Polyepichlorhydrin polymer was deposited on flat substrate (i.e. silicon) using an NdYAG laser (266 nm, 5 ns pulse duration and 10 Hz repetition rate).The obtained thin films have been characterized by atomic force microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy and spectroscopic ellipsometry.It was found that for laser fluences up to 1.5 J/cm2 the chemical structure of the deposited polyepichlorhydrin polymer thin layers resembles to the native polymer, whilst by increasing the laser fluence above 1.5 J/cm2 the polyepichlorohydrin films present deviations from the bulk polymer.Morphological investigations (atomic force microscopy and scanning electron microscopy) reveal continuous polyepichlorhydrin thin films for a relatively narrow range of fluences (1-1.5 J/cm2).The wavelength dependence of the refractive index and extinction coefficient was determined by ellipsometry studies which lead to new insights about the material.The obtained results indicate that pulsed laser deposition method is potentially useful for the fabrication of polymer thin films to be used in applications including electronics, microsensor or bioengineering industries.  相似文献   

20.
We demonstrated the pulsed laser deposition (PLD) of high quality films of a biodegradable polymer, the polyhydroxybutyrate (PHB). Thin films of PHB were deposited on KBr substrates and fused silica plates using an ArF (λ = 193 nm, FWHM = 30 ns) excimer laser with fluences between 0.05 and 1.5 J cm−2. FTIR spectroscopic measurements proved that at the appropriate fluence (0.05, 0.09 and 0.12 J cm−2), the films exhibited similar functional groups with no significant laser-produced modifications present. Optical microscopic images showed that the layers were contiguous with embedded micrometer-sized grains. Ellipsometric results determined the wavelength dependence (λ ∼ 245-1000 nm) of the refractive index and absorption coefficient which were new information about the material and were not published in the scientific literature. We believe that our deposited PHB thin films would have more possible applications. For example to our supposal the thin layers would be applicable in laser induced forward transfer (LIFT) of biological materials using them as absorbing thin films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号