首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 7 毫秒
1.
马晓华  马骥刚  杨丽媛  贺强  焦颖  马平  郝跃 《中国物理 B》2011,20(6):67304-067304
The kink effect is studied in an AlGaN/GaN high electron mobility transistor by measuring DC performance during fresh, short-term stress and recovery cycle with negligible degradation. Vdg plays an assistant role in detrapping electrons and short-term stress results in no creation of new category traps but an increase in number of active traps. A possible mechanism is proposed that electrical stress supplies traps with the electric field for activation and when device is under test field-assisted hot-electrons result in electrons detrapping from traps, thus deteriorating the kink effect. In addition, experiments show that the impact ionization is at a relatively low level, which is not the dominant mechanism compared with trapping effect. We analyse the complicated link between the kink effect and stress bias through groups of electrical stress states: Vds = 0-state, off-state, on-state (on-state with low voltage, high-power state, high field state). Finlly, a conclusion is drawn that electric field brings about more severe kink effect than hot electrons. With the assistance of electric field, hot electrons tend to be possible to modulate the charges in deep-level trap.  相似文献   

2.
林若兵  王欣娟  冯倩  王冲  张进城  郝跃 《物理学报》2008,57(7):4487-4491
在不同应力条件下,研究了AlGaN/GaN高电子迁移率晶体管高温退火前后的电流崩塌、栅泄漏电流以及击穿电压的变化.结果表明,AlGaN/GaN高电子迁移率晶体管通过肖特基高温退火以后,器件的特性得到很大的改善.利用电镜扫描(SEM)和X射线光电子能谱(XPS)对高温退火前、后的肖特基接触界面进行深入分析,发现器件经过高温退火后,Ni和AlGaN层之间介质的去除,并且AlGaN材料表面附近的陷阱减少,使得肖特基有效势垒提高,从而提高器件的电学特性. 关键词: AlGaN/GaN高电子迁移率晶体管 肖特基接触 界面陷阱  相似文献   

3.
AlGaN/GaN high electron mobility transistors (HEMTs) are fabricated by employing SiN passivation, this paper investigates the degradation due to the high-electric-field stress. After the stress, a recoverable degradation has been found, consisting of the decrease of saturation drain current IDsat, maximal transconductance gm, and the positive shift of threshold voltage VTH at high drain-source voltage VDS. The high-electric-field stress degrades the electric characteristics of AlGaN/GaN HEMTs because the high field increases the electron trapping at the surface and in AlGaN barrier layer. The SiN passivation of AlGaN/GaN HEMTs decreases the surface trapping and 2DEG depletion a little during the high-electric-field stress. After the hot carrier stress with VDS=20 V and VGS=0 V applied to the device for 104 sec, the SiN passivation decreases the stress-induced degradation of IDsat from 36% to 30%. Both on-state and pulse-state stresses produce comparative decrease of IDsat, which shows that although the passivation is effective in suppressing electron trapping in surface states, it does not protect the device from high-electric-field degradation in nature. So passivation in conjunction with other technological solutions like cap layer, prepassivation surface treatments, or field-plate gate to weaken high-electric-field degradation should be adopted.  相似文献   

4.
Silicon-doped GaN epilayers and AlGaN/GaN heterostructures were developed by nitrogen plasma-assisted molecular beam epitaxy on high resistivity iron-doped GaN (0001) templates and their properties were investigated by atomic force microscopy, x-ray diffraction and Hall effect measurements. In the case of high electron mobility transistors heterostructures, the AlN mole fraction and the thickness of the AlGaN barrier employed were in the range of from 0.17 to 0.36 and from 7.5 to 30 nm, respectively. All structures were capped with a 2 nm GaN layer.Despite the absence of Ga droplets formation on the surface, growth of both GaN and AlGaN by RF-MBE on the GaN (0001) surfaces followed a step-flow growth mode resulting in low surface roughness and very abrupt heterointerfaces, as revealed by XRD. Reciprocal space maps around the reciprocal space point reveal that the AlGaN barriers are fully coherent with the GaN layer.GaN layers, n-doped with silicon in the range from 1015 to 1019 cm−3 exhibited state of the art electrical properties, consistent with a low unintentional background doping level and low compensation ratio. The carrier concentration versus silicon cell temperatures followed an Arhenius behaviour in the whole investigated doping range. The degenerate 2DEG, at the AlGaN/GaN heteroiterfaces, exhibited high Hall mobilities reaching 1860 cm2/V s at 300 K and 10 220 cm2/V s at 77 K for a sheet carrier density of 9.6E12 cm−2.The two dimensional degenerate electron gas concentration in the GaN capped AlGaN/GaN structures was also calculated by self-consistent solving the Schrödinger–Poisson equations. Comparison with the experimental measured values reveals a Fermi level pinning of the GaN (0001) surface at about 0.8 eV below the GaN conduction band.  相似文献   

5.
杨丽媛  薛晓咏  张凯  郑雪峰  马晓华  郝跃 《中国物理 B》2012,21(7):77304-077304
Self-heating in multifinger AlGaN/GaN high electron mobility transistor (HEMT) is investigated by micro-Raman spectroscopy. The device temperature is probed on the die as a function of applied bias. The operating temperature of AlGaN/GaN HEMT is estimated from the calibration curve of passively heated AlGaN/GaN structure. A linear increase of junction temperature is observed when direct current dissipated power is increased. When the power dissipation is 12.75 W at a drain voltage of 15 V, a peak temperature of 69.1 ℃ is observed at the gate edge on the drain side of the central finger. The position of the highest temperature corresponds to the high-field region at the gate edge.  相似文献   

6.
Using measured capacitance-voltage curves and current-voltage characteristics for the AlGaN/AlN/GaN heterostructure field-effect transistors with different gate lengths and drain-to-source distances,the influence of drain bias on the electron mobility is investigated.It is found that below the knee voltage the longitudinal optical(LO) phonon scattering and interface roughness scattering are dominant for the sample with a large ratio of gate length to drain-to-source distance(here 4/5),and the polarization Coulomb field scattering is dominant for the sample with a small ratio(here 1/5).However,the above polarization Coulomb field scattering is weakened in the sample with a small drain-to-source distance(here 20 μm) compared with the one with a large distance(here 100 μm).This is due to the induced strain in the AlGaN layer caused by the drain bias.  相似文献   

7.
This paper gives a detailed analysis of the time-dependent degradation of the threshold voltage in AlGaN/GaN high electron mobility transistors(HEMTs) submitted to off-state stress. The threshold voltage shows a positive shift in the early stress, then turns to a negative shift. The negative shift of the threshold voltage seems to have a long recovery time. A model related with the balance of electron trapping and detrapping induced by shallow donors and deep acceptors is proposed to explain this degradation mode.  相似文献   

8.
段宝兴  杨银堂 《中国物理 B》2012,21(5):57201-057201
In this paper,two-dimensional electron gas(2DEG) regions in AlGaN/GaN high electron mobility transistors(HEMTs) are realized by doping partial silicon into the AlGaN layer for the first time.A new electric field peak is introduced along the interface between the AlGaN and GaN buffer by the electric field modulation effect due to partial silicon positive charge.The high electric field near the gate for the complete silicon doping structure is effectively decreased,which makes the surface electric field uniform.The high electric field peak near the drain results from the potential difference between the surface and the depletion regions.Simulated breakdown curves that are the same as the test results are obtained for the first time by introducing an acceptor-like trap into the N-type GaN buffer.The proposed structure with partial silicon doping is better than the structure with complete silicon doping and conventional structures with the electric field plate near the drain.The breakdown voltage is improved from 296 V for the conventional structure to 400 V for the proposed one resulting from the uniform surface electric field.  相似文献   

9.
全思  郝跃  马晓华  于惠游 《中国物理 B》2011,20(1):18101-018101
This paper reports fluorine plasma treatment enhancement-mode HEMTs (high electronic mobility transistors) EHEMTs and conventional depletion-mode HEMTs DHEMTs fabricated on one wafer using separate litho-photography technology. It finds that fluorine plasma etches the AlGaN at a slow rate by capacitance--voltage measurement. Using capacitance--frequency measurement, it finds one type of trap in conventional DHEMTs with τT=(0.5-6) ms and DT= (1 - 5) × 1013 cm-2·eV-1. Two types of trap are found in fluorine plasma treatment EHEMTs, fast with τT(f)=(0.2-2) μs and slow with τT(s)=(0.5-6) ms. The density of trap states evaluated on the EHEMTs is DT(f)=(1 - 3) × 1012 cm-2·eV-1 and DT(s)=(2 - 6) × 1012 cm-2·eV-1 for the fast and slow traps, respectively. The result shows that the fluorine plasma treatment reduces the slow trap density by about one order, but introduces a new type of fast trap. The slow trap is suggested to be a surface trap, related to the gate leakage current.  相似文献   

10.
杨凌  胡贵州  郝跃  马晓华  全思  杨丽媛  姜守高 《中国物理 B》2010,19(4):47301-047301
This paper investigates the impact of electrical degradation and current collapse on different thickness SiNx passivated AlGaN/GaN high electron mobility transistors.It finds that higher thickness SiNx passivation can significantly improve the high-electric-field reliability of a device.The degradation mechanism of the SiNx passivation layer under ON-state stress has also been discussed in detail.Under the ON-state stress,the strong electric-field led to degradation of SiNx passivation located in the gate-drain region.As the thickness of SiNx passivation increases,the density of the surface state will be increased to some extent.Meanwhile,it is found that the high NH 3 flow in the plasma enhanced chemical vapour deposition process could reduce the surface state and suppress the current collapse.  相似文献   

11.
In this paper,two-dimensional electron gas(2DEG) regions in AlGaN/GaN high electron mobility transistors(HEMTs) are realized by doping partial silicon into the AlGaN layer for the first time.A new electric field peak is introduced along the interface between the AlGaN and GaN buffer by the electric field modulation effect due to partial silicon positive charge.The high electric field near the gate for the complete silicon doping structure is effectively decreased,which makes the surface electric field uniform.The high electric field peak near the drain results from the potential difference between the surface and the depletion regions.Simulated breakdown curves that are the same as the test results are obtained for the first time by introducing an acceptor-like trap into the N-type GaN buffer.The proposed structure with partial silicon doping is better than the structure with complete silicon doping and conventional structures with the electric field plate near the drain.The breakdown voltage is improved from 296 V for the conventional structure to 400 V for the proposed one resulting from the uniform surface electric field.  相似文献   

12.
In this study, the authors have investigated the structural and optical properties of ZnO layer grown by pulsed laser deposition on GaN/r-plane sapphire. X-ray diffraction results demonstrate the ZnO film to be highly preferentially deposited at a-axis orientation; the different rocking curve values along the two orthogonal directions indicate the low C2v symmetry in the growth a-plane ZnO. From free stress to large tensile stress (about 1.34 × 109 Pa) distribution along the growth direction of ZnO is revealed by visible Raman mapping spectra. The enhanced significantly high-order longitudinal-optical (LO) phonon modes up to 4th and no TO phonons have been observed in Raman spectrum under UV 325 nm by resonance conditions; an intense and broad disorder activated surface phonon mode is also observed, resulting from the increased disorder on the film surface with stripe-like growth features. Low-temperature photoluminescence measurements reveal that the band-edge emission of ZnO is dominated by neutral donor-bound exciton and free electrons to neutral acceptor emissions. Interfacial microstructure of ZnO/GaN has been examined by transmission electron microscopy, with the epitaxial relationship () ZnO//() GaN. All these results indicated that GaN template played an important role in the growth of ZnO film, with full advantage of small lattice mismatch.  相似文献   

13.
By making use of the quasi-two-dimensional (quasi-2D) model, the current-voltage (l-V) characteristics of In0AsA10.82N/A1N/GaN heterostructure field-effect transistors (HFETs) with different gate lengths are simulated based on the measured capacitance-voltage (C-V) characteristics and I-V characteristics. By analyzing the variation of the electron mobility for the two-dimensional electron gas (2DEG) with electric field, it is found that the different polarization charge distributions generated by the different channel electric field distributions can result in different polarization Coulomb field scatterings. The difference between the electron mobilities primarily caused by the polarization Coulomb field scatterings can reach up to 1522.9 cm2/V.s for the prepared In0.38AI0.82N/A1N/GaN HFETs. In addition, when the 2DEG sheet density is modulated by the drain-source bias, the electron mobility presents a peak with the variation of the 2DEG sheet density, the gate length is smaller, and the 2DEG sheet density corresponding to the peak point is higher.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号