首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pure and Cu-doped ZnO (ZnO:Cu) thin films were deposited on glass substrates using radio frequency (RF) reactive magnetron sputtering. The effect of substrate temperature on the crystallization behavior and optical properties of the ZnO:Cu films have been studied. The crystal structures, surface morphology and optical properties of the films were systematically investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and a fluorescence spectrophotometer, respectively. The results indicated that ZnO films showed a stronger preferred orientation toward the c-axis and a more uniform grain size after Cu-doping. As for ZnO:Cu films, the full width at half maxima (FWHM) of (0 0 2) diffraction peaks decreased first and then increased, reaching a minimum of about 0.42° at 350 °C and the compressive stress of ZnO:Cu decreased gradually with the increase of substrate temperature. The photoluminescence (PL) spectra measured at room temperature revealed two blue and two green emissions. Intense blue-green luminescence was obtained from the sample deposited at higher substrate temperature. Finally, we discussed the influence of annealing temperature on the structural and optical properties of ZnO:Cu films. The quality of ZnO:Cu film was markedly improved and the intensity of blue peak (∼485 nm) and green peak (∼527 nm) increased noticeably after annealing. The origin of these emissions was discussed.  相似文献   

2.
ZnO films with strong c-axis-preferred orientation have been prepared by a single source chemical vapor deposition technique using zinc acetate as source material at the growth temperature of 230 °C. The strong UV and blue emissions were observed in the photoluminescence spectra of as-grown films. A small quantity of residual zinc acetate was reserved on the surface of as-grown ZnO films and the emission mechanism of blue luminescence was nearly related to the CH3COO- of unidentate type. The blue emission disappeared and the green emission appeared after annealing treatment. The green emission is related to the singly ionized oxygen vacancies.  相似文献   

3.
ZnO thin films were prepared by RF magnetron sputtering. The photoluminescence dependence on the growth ambient and annealing temperatures and the atmosphere has been studied. Visible photoluminescence with blue, green, orange, and red emission bands has been demonstrated by controlling the preparation conditions. Complete suppression of the visible emission bands was also realized by annealing the O2-ambient-grown samples in N2 atmosphere at higher temperatures, which indicated the preparation of ZnO thin films with high optical quality.  相似文献   

4.
Zinc oxide (ZnO) thin films were grown on Si (1 0 0) substrates by pulsed laser deposition (PLD) using two-step epitaxial growth method. Low temperature buffer layer (LTBL) was initially deposited in order to obtain high quality ZnO thin film; the as-deposited films were then annealed in air at 700 °C. The effects of LTBL and annealing treatment on the structural and luminescent properties of ZnO thin film were investigated. It was found that tensile strain was remarkably relaxed by employing LTBL and the band-gap redshifted, correspondingly. The shift value was larger than that calculated from band-gap theories. After annealing treatment, it was found that the annealing temperature with 700 °C has little influence on strains of ZnO films with LTBLs other than directly deposited film in our experiments. Interestingly, the different behaviors in terms of the shift of ultraviolet (UV) emission after annealing between films with and without buffer were observed, and a tentative explanation was given in this paper.  相似文献   

5.
Al-N-codoped ZnO films were fabricated by RF magnetron sputtering in the ambient of N2 and O2 on silicon (1 0 0) and homo-buffer layer, subsequently, annealed in O2 at low pressure. X-ray diffraction (XRD) spectra show that as-grown and 600 °C annealed films grown by codoping method are prolonged along crystal c-axis. However, they are not prolonged in (0 0 1) plane vertical to c-axis. The films annealed at 800 °C are not prolonged in any directions. Codoping makes ZnO films unidirectional variation. X-ray photoelectron spectroscopy (XPS) shows that Al content hardly varies and N escapes with increasing annealing temperature from 600 °C to 800 °C.  相似文献   

6.
Photoluminescence (PL) properties of differently doped nanocrystalline ZnS encapsulated by ZnO (ZnS/ZnO) are reported. It is found that in all cases aluminium as an extra/additional dopant leads to PL enhancement. In comparison to reported blue emitting bulk ZnS:Ag, or green emitting bulk ZnS:Cu, our nanocrystalline samples show a different PL emission profile. This observation is attributed to nanogranule formation, different dopant levels and ZnO capping related energy level modifications.  相似文献   

7.
HfxZn1−xO thin films (x=3, 7, 10 and 15 mol%) were deposited on Si (1 0 0) using pulsed laser deposition. The influence of the Hf concentration on the microstructure and optical properties of the films was studied. It is found that Hf ions can be effectively doped into ZnO and all films crystallize in the hexagonal wurtzite structure with a preferred c-axis orientation. The lattice constants of HfxZn1−xO films increase with the Hf contents. Two ultraviolet peaks centered at about 364 and 380 nm coexist in the fluorescent spectra. With increasing the Hf contents, the intensity of fluorescent peaks enhances remarkably. At the same time the energy gaps gradually increase, while the positions of ultraviolet peaks remain unchanged. The mechanism of luminescent emission for HfxZn1−xO films was discussed.  相似文献   

8.
Al-doped ZnO (ZnO:Al) thin films with c-axis preferred orientation were deposited on glass substrates using the radio frequency reactive magnetron sputtering technique. The effect of Al concentrations on the microstructure and the luminescence properties of the ZnO:Al thin films were studied by atomic force microscopy (AFM), X-ray diffraction (XRD), and fluorescence spectrophotometer. The results showed that the crystallization of the films was promoted by appropriate Al concentrations; the photoluminescence spectra (PL) of the samples were measured at room temperature. Strong blue peak located at 437 nm (2.84 eV) and two weak green peaks located at about 492 nm (2.53 eV) and 524 nm (2.37 eV) were observed from the PL spectra of the four samples. The origin of these emissions was discussed. In addition, absorption and transmittance properties of the samples were researched by UV spectrophotometer; the UV absorption edge shifted to a shorter wavelength first as Al was incorporated, and then to a longer wavelength with the increasing Al concentrations. The optical band gaps calculated based on the quantum confinement model are in good agreement with the experimental values.  相似文献   

9.
ZnO nanospheres were synthesized by a wet-chemical method. X-ray diffraction and field-emission scanning electron microscopy confirmed the formation of wurtzite-structured ZnO with regular sphere shape. Two Raman modes located at 333 cm−1 and 437 cm−1 with two additional Raman humps centered at 577 cm−1 and 1077 cm−1 were observed. Photoluminescence spectra showed ultraviolet, green, orange and red emissions, which changed significantly after the samples were annealed in air, oxygen, argon and forming gas four different ambiences. All the evidence indicates that surface states are responsible to orange and red emissions in addition to excitonic recombination (3.18 eV) and oxygen vacancy (2.25 eV) emission.  相似文献   

10.
The Antimony-doped tin oxide (SnO2:Sb) films have been prepared on glass substrates by RF magnetron sputtering method. The prepared samples are polycrystalline films with rutile structure of pure SnO2 and have preferred orientation of (1 1 0) direction. XRD measurement did not detect the existence of Sb2O3 phase and Sb2O5 phase; Sb ions occupy the site of Sn ions and form the substitution doping. An intensive UV-violet luminescence peak near 392 nm is observed at room temperature. Photoluminescence (PL) properties influenced by sputtering power and annealing for the SnO2:Sb films are investigated in detail and corresponding PL mechanism is discussed.  相似文献   

11.
J.C. Fan 《Applied Surface Science》2008,254(20):6358-6361
p-Type ZnO:As films with a hole concentration of 1016-1017 cm−3 and a mobility of 1.32-6.08 cm2/V s have been deposited on SiO2/Si substrates by magnetron sputtering. XRD, SEM, Hall measurements are used to investigate the structural and electrical properties of the films. A p-n homojunction comprising an undoped ZnO layer and a ZnO:As layer exhibits a typical rectifying behavior. Our study demonstrates a simple method to fabricate reproducible p-type ZnO film on the SiO2/Si substrate for the development of ZnO-based optoelectronic devices on Si-based substrates.  相似文献   

12.
Photoluminescence and absorption in sol-gel-derived ZnO films   总被引:1,自引:0,他引:1  
Highly c-axis-oriented ZnO films were obtained on corning glass substrate by sol-gel technique. The characteristics of photoluminescence (PL) of ZnO, as well as the exciton absorption in the absorption (UV) spectra are closely related to the post-annealing treatment. The difference between PL peak position and the absorption edge, designated as Stokes shift, is found to decrease with the increase of annealing temperature. The minimum Stokes shift is about 150 meV. The decrease of Stokes shift is attributed to the decrease in carrier concentration in ZnO film with annealing. X-ray diffraction, surface morphology and refractive index results indicate an improvement in crystalline quality with annealing. Annealed films also exhibit a green emission centered at ∼520 nm with activation energy of 0.89 eV. The green emission is attributed to the electron transition from the bottom of the conduction band to the antisite oxygen OZn defect levels.  相似文献   

13.
A new transparent conducting oxide (TCO) film with low resistivity and high transmittance in the visible range, molybdenum-doped zinc oxide (MZO), was successfully prepared by RF magnetron sputtering method on glass substrates at room temperature. The structural, electrical, and optical properties as a function of film thickness were investigated. All the samples have a preferred orientation with the (0 0 2) planes parallel to the substrates. The resistivity initially decreases and then shows an increase with the increase of the film thickness. When the thickness is 400 nm, the film has its best crystallinity and lowest resistivity 9.2 × 10−4 Ω cm with a Hall mobility of 30 cm2 V−1 s−1 and a carrier concentration of 2.3 × 1020 cm−3. The average transmittance in the visible range exceeds 84% for all thickness films.  相似文献   

14.
We report photoluminescence (PL) and reflectivity measurements of Zn0.5Cd0.5Se epilayers grown by molecular beam epitaxy on InP substrates. The low-temperature PL spectra are dominated by asymmetric lines, which can be deconvoluted into two Gaussian peaks with a separation of ∼8 meV. The behavior of these peaks is studied as a function of excitation intensity and temperature, revealing that these are free exciton (FE) and bound exciton emission lines. Two lower energy emission lines are also observed and assigned to the first and second longitudinal optical phonon replicas of the FE emission. The temperature dependence of the intensity, line width, and energy of the dominant emission lines are described by an Arrhenius plot, a Bose-Einstein type relationship, Varshni's and Bose-Einstein equations, respectively.  相似文献   

15.
Sword-like (diameter ranging from 40 nm to 300 nm) and needle-like zinc oxide (ZnO) nanostructures (average tip diameter ∼40 nm) were synthesized on annealed silver template over silicon substrate and directly on silicon wafer, respectively via thermal evaporation of metallic zinc followed by a thermal annealing in air. The surface morphology, microstructure, chemical analysis and optical properties of the grown samples were investigated by field emission scanning electron microscopy, X-ray diffraction, energy dispersive X-ray analysis, room temperature photoluminescence and Raman spectroscopy. The sword-like ZnO nanostructures grown on annealed silver template are of high optical quality compared to needle-like ZnO nanorods for UV emission and show enhanced Raman scattering.  相似文献   

16.
The ZnO films were deposited on c-plane sapphire, Si (0 0 1) and MgAl2O4 (1 1 1) substrates in pure Ar ambient at different substrate temperatures ranging from 400 to 750 °C by radio frequency magnetron sputtering. X-ray diffraction, photoluminescence and Hall measurements were used to evaluate the growth temperature and the substrate effects on the properties of ZnO films. The results show that the crystalline quality of the ZnO films improves with increasing the temperature up to 600 °C, the crystallinity of the films is degraded as the growth temperature increasing further, and the ZnO film with the best crystalline quality is obtained on sapphire at 600 °C. The intensity of the photoluminescence and the electrical properties strongly depend on the crystalline quality of the ZnO films. The ZnO films with the better crystallinity have the stronger ultraviolet emission, the higher mobility and the lower residual carrier concentration. The effects of crystallinity on light emission and electrical properties, and the possible origin of the n-type conductivity of the undoped ZnO films are also discussed.  相似文献   

17.
Silicon carbonitride (SiCN) thin films were deposited on n-type Si (1 0 0) and glass substrates by reactive magnetron sputtering of a polycrystalline silicon target in a mixture of argon (Ar), nitrogen (N2) and acetylene (C2H2). The properties of the films were characterized by scanning electron microscope with an energy dispersive spectrometer, X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectrometry and ultraviolet-visible spectrophotometer. The results show that the C2H2 flow rate plays an important role in the composition, structural and optical properties of the films. The films have an even surface and an amorphous structure. With the increase of C2H2 flow rate, the C content gradually increases while Si and N contents have a tendency to decrease in the SiCN films, and the optical band gap of the films monotonically decreases. The main bonds are Si-O, N-Hn, C-C, C-N, Si-N, Si-C and Si-H in the SiCN films while the chemical bonding network of Si-O, C-C, C-O, C-N, N-Si and CN is formed in the surface of the SiCN films.  相似文献   

18.
In-N codoped ZnMgO films have been prepared on glass substrates by direct current reactive magnetron sputtering. The p-type conduction could be obtained in ZnMgO films by adjusting the N2O partial pressures. The lowest resistivity was found to be 4.6 Ω cm for the p-type ZnMgO film deposited under an optimized N2O partial pressure of 2.3 mTorr, with a Hall mobility of 1.4 cm2/V s and a hole concentration of 9.6 × 1017 cm−3 at room temperature. The films were of good crystal quality with a high c-axis orientation of wurtzite ZnO structure. The presence of In-N bonds was identified by X-ray photoelectron spectroscopy, which may enhance the nitrogen incorporation and respond for the realization of good p-type behavior in In-N codoped ZnMgO films. Furthermore, the ZnMgO-based p-n homojunction was fabricated by deposition of an In-doped n-type ZnMgO layer on an In-N codoped p-type ZnMgO layer. The p-n homostructural diode exhibits electrical rectification behavior of a typical p-n junction.  相似文献   

19.
ZnO:N thin films have been deposited on oxygen and zinc terminated polar surfaces of ZnO. The nitrogen incorporation in the epilayers, using NH3 as doping source, was investigated as a function of the growth temperature in the range between 380 °C and 580 °C. We used Raman spectroscopy and low temperature photoluminescence to investigate the doping properties. It turned out that the nitrogen incorporation strongly depends on both, the surface polarity of the epitaxial films and the applied growth temperatures. In our CVD process low growth temperatures and Zn‐terminated substrate surfaces clearly favour the nitrogen incorporation in the ZnO thin films. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
Mn-doped ZnO nanorods were synthesized from aqueous solutions of zinc nitrate hexahydrate, manganese nitrate and methenamine by the chemical solution deposition method (CBD). Their microstructures, morphologies and optical properties were studied in detail. X-ray diffraction (XRD) results illustrated that all the diffraction peaks can be indexed to ZnO with the hexagonal wurtzite structure. Scanning electron microscope (SEM) results showed that the average diameter of Mn-doped ZnO nanorods was larger than that of the undoped one. Photoluminescence (PL) spectra indicated that manganese doping suppressed the emission intensity and caused the blue shift of UV emission position compared with the undoped ZnO nanorods. In the Raman spectrum of Mn-doped ZnO nanorods, an additional mode at about 525 cm−1 appeared which was significantly enhanced and broadened with the increase of Mn doping concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号