首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polycrystalline magnetite films were grown by pulsed laser deposition from an α-Fe2O3 target at 450 °C. X-ray diffraction analysis showed the presence of a single-phase spinel film with preferred orientation when the deposition was performed at low oxygen pressure. Mössbauer spectroscopy at both room temperature and 120 K was used to identify the hyperfine parameters of the magnetite film deposited on glass at 450 °C and at an oxygen partial pressure of 10−4 Torr.  相似文献   

2.
We deposited SrCu2O2 (SCO) films on sapphire (Al2O3) (0 0 0 1) substrates by pulsed laser deposition. The crystallographic orientation of the SCO thin film showed clear dependence on the growth temperature. X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis showed that the film deposited at 400 °C was mainly oriented in the SCO [2 0 0] direction, whereas when the growth temperature was increased to 600 °C, the SCO film showed a dominant orientation of SCO [1 1 2]. The SCO film deposited at 500 °C was obvious polycrystalline, showing multi peaks from (2 0 0), (1 1 2), and (2 1 1) diffraction in the XRD spectrum. The SCO film deposited at 600 °C showed a band gap energy of 3.3 eV and transparency up to 80% around 500 nm. The photoluminescence (PL) spectra of the SCO films grown at 500 °C and 600 °C mainly showed blue-green emission, which was attributed to the intra-band transition of the isolated Cu+ and Cu+–Cu+ pairs according to the temperature dependent-PL analysis.  相似文献   

3.
Detailed transmission electron microscopy characterization of HfO2 films deposited on Si(1 0 0) using atomic layer deposition has been carried out. The influence of deposition temperature has been investigated. At 226 °C, a predominantly quasi-amorphous film containing large grains of cubic HfO2 (a0 = 5.08 Å) was formed. Grain morphology enabled the nucleation sites to be determined. Hot stage microscopy showed that both the cubic phase and the quasi-amorphous phase were very resistant to thermal modification up to 500 °C. These observations suggest that nucleation sites for the growth of the crystalline cubic phase form at the growing surface of the film, rather homogeneously within the film. The films grown at higher temperatures (300-750 °C) are crystalline and monoclinic. The principal effects of deposition temperature were on: grain size, which coarsens at the highest temperature; roughness with increases at the higher temperatures due to the prismatic faceting, and texture, with texturing being strongest at intermediate temperatures. Detailed interfacial characterization shows that interfacial layers of SiO2 form at low and high temperatures. However, at intermediate temperatures, interfaces devoid of SiO2 were formed.  相似文献   

4.
The electrical as well as the structural properties of La2O3 thin films on TiN substrates were investigated. Amorphous stoichiometric La2O3 thin films were grown at 300 °C via atomic layer deposition technique by using lanthanum 2,2,6,6-tetramethyl-3,5-heptanedione [La(TMHD)3] and H2O as precursors. Post-annealing of the grown film induced dramatic changes in structural and the electrical properties. Crystalline phases of the La2O3 film emerged with the increase of the post-annealing temperature. Metal-insulator-metal (MIM) capacitor was fabricated to measure the electrical properties of the grown film. The dielectric constant of the La2O3 thin films increased with annealing temperature to reach the value of 17.3 at 500 °C. The leakage current density of the film post-annealed at 400 °C was estimated to be 2.78 × 10−10 and 2.1 × 10−8 A/cm2 at ±1 V, respectively.  相似文献   

5.
The Cr-doped zinc oxide (Zn0.97Cr0.03O) nanoparticles were successfully synthesized by sol-gel method. The relationship between the annealing temperature (400 °C, 450 °C, 500 °C and 600 °C) and the structure, magnetic properties and the optical characteristics of the produced samples was studied. The results indicate that Cr (Cr3+) ions at least partially substitute Zn (Zn2+) ions successfully. Energy dispersive spectroscopy (EDS) measurement showed the existence of Cr ion in the Cr-doped ZnO. The samples sintered in air under the temperature of 450 °C had single wurtzite ZnO structure with prominent ferromagnetism at room temperature, while in samples sintered in air at 500 °C, a second phase-ZnCr2O4 was observed and the samples were not saturated in the field of 10000 Oe. This indicated that they were mixtures of ferromagnetic materials and paramagnetic materials. Compared with the results of the photoluminescence (PL) spectra, it was reasonably concluded that the ferromagnetism observed in the studied samples was originated from the doping of Cr in the lattice of ZnO crystallites.  相似文献   

6.
Q. Su 《Applied Surface Science》2009,255(7):4177-4179
β-V2O5 films were successfully prepared on silicon substrates by direct current (DC) reactive magnetron sputtering. X-ray diffraction (XRD), Raman spectra and field emission scan electron spectroscopy (SEM) were used to characterize the samples. Results revealed that the deposition temperature significantly influenced on the crystal structure of V2O5 films in the growth process. When the deposition temperature was below 500 °C, the sputtered film exhibited the α-V2O5 structure. However, β-V2O5 film was successfully obtained at 550 °C. High deposition temperature might provide V and O ions high mobility and energy in the reactive sputtering process, which induced the metastable β-V2O5 phase formed. The thermal stability of β-V2O5 film was studied by micro-Raman spectroscopy. The structure of sputtered β-V2O5 film was unstable under high temperature conditions (beyond 500 °C).  相似文献   

7.
NbNx films were deposited on Nb substrate using pulsed laser deposition. The effects of substrate deposition temperature, from room temperature to 950 °C, on the preferred orientation, phase, and surface properties of NbNx films were studied by X-ray diffraction, atomic force microscopy, and electron probe micro analyzer. We find that the substrate temperature is a critical factor in determining the phase of the NbNx films. For a substrate temperature up to 450 °C the film showed poor crystalline quality. With temperature increase the film became textured and for a substrate temperature of 650−850 °C, mix of cubic δ-NbN and hexagonal phases (β-Nb2N + δ′-NbN) were formed. Films with a mainly β-Nb2N hexagonal phase were obtained at deposition temperature above 850 °C. The c/a ratio of β-Nb2N hexagonal shows an increase with increased nitrogen content. The surface roughness of the NbNx films increased as the temperature was raised from 450 to 850 °C.  相似文献   

8.
MnFe2O4 nanoparticles have been synthesized with a sol-gel method. Both differential thermal and thermo-gravimetric analyses indicate that MnFe2O4 nanoparticles form at 400 °C. Samples treated at 450 and 500 °C exhibit superparamagnetism at room temperature as implied from vibrating sample magnetometry. Mössbauer results indicate that as Mn2+ ions enter into the octahedral sites, Fe3+ ions transfer from octahedral to tetrahedral sites. When the calcination temperature increases from 450 to 700 °C, the occupation ratio of Fe3+ ions at the octahedral sites decreases from 43% to 39%. Susceptibility measurements versus magnetic field are reported for various temperatures (from 450 to 700 °C) and interpreted within the Stoner-Wohlfarth model.  相似文献   

9.
In this study, SrAl2O4:Eu2+,Dy3+ thin film phosphors were deposited on Si (1 0 0) substrates using the pulsed laser deposition (PLD) technique. The films were deposited at different substrate temperatures in the range of 40-700 °C. The structure, morphology and topography of the films were determined by using X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). Photoluminescence (PL) data was collected in air at room temperature using a 325 nm He-Cd laser as an excitation source. The PL spectra of all the films were characterized by green phosphorescent photoluminescence at ∼530 nm. This emission was attributed to 4f65d1→4f7 transition of Eu2+. The highest PL intensity was observed from the films deposited at a substrate temperature of 400 °C. The effects of varying substrate temperature on the PL intensity were discussed.  相似文献   

10.
In the present investigation, thin films of CdSnSe have been developed on transparent conducting oxide (TCO) coated glasses by electrolytic deposition. The controlled incorporation of Sn in the semiconducting layer have been achieved by varying the concentration of Sn2+ from 5 to 22 g/l of SnCl2 in the deposition bath. The semiconductor film grown on the glass substrate consisted of n-type CdSnSe semiconductor compounds (alloyed and/or mixed type) in the form of highly dispersed, spherically shaped polycrystallites as detected from X-ray diffraction (XRD) studies, atomic force microscopy (AFM) and scanning electron microscopy (SEM). Their optoelectronic properties were determined by spectroscopic analysis and electrochemical measurements. The performance characteristics of a photoelectrochemical (PEC) cell fabricated with the prepared photo-electrode and ferrocene-ferricenium redox couple in dimethyl formamide were observed under dark and illuminated conditions. The prepared semiconductor films were electrochemically characterized through capacitance-voltage measurements. The film that was obtained from 10 g/l of Sn2+ in the bath, showed an optimum spectral sensitivity and corresponded to a film thickness of 0.65 μm and stoichiometry of Cd:Sn:Se as 1:1:1. The pronounced PEC activity of this film compared to the others was attributed to the combined effect of space charge properties, electron-hole recombination processes and transfer of charges through the Helmholtz layer at the semiconductor-solution interface.  相似文献   

11.
In the present paper, we investigate the effect of thermal annealing on optical and microstructural properties of HfO2 thin films (from 20 to 190 nm) obtained by plasma ion assisted deposition (PIAD). After deposition, the HfO2 films were annealed in N2 ambient for 3 h at 300, 350, 450, 500 and 750 °C. Several characterisation techniques including X-ray reflectometry (XRR), X-ray diffraction (XRD), spectroscopic ellipsometry (SE), UV Raman and FTIR were used for the physical characterisation of the as-deposited and annealed HfO2 thin films. The results indicate that as-deposited PIAD HfO2 films are mainly amorphous and a transition to a crystalline phase occurs at a temperature higher than 450 °C depending on the layer thickness. The crystalline grains consist of cubic and monoclinic phases already classified in literature but this work provides the first evidence of amorphous-cubic phase transition at a temperature as low as 500 °C. According to SE, XRR and FTIR results, an increase in the interfacial layer thickness can be observed only for high temperature annealing. The SE results show that the amorphous phase of HfO2 (in 20 nm thick samples) has an optical bandgap of 5.51 eV. Following its transition to a crystalline phase upon annealing at 750 °C, the optical bandgap increases to 5.85 eV.  相似文献   

12.
Nanocrystalline SnO2:Sb films were prepared by a sol-gel route using C6H8O7-triethanolamine (TEA) mixing aqueous solution with pH 6.5-7.0. Stannous oxalate and antimony trichloride were used as tin and antimony sources. IR, XRD FESEM, FETEM, UV-vis and four-point probe measurement were used to characterize sol-gel chemistry, structure, morphologies, optical and electrical properties. Mechanism of sol-gel reaction illuminated that existence of TEA supplied large numbers of active tin hydrate and ionized state carboxyl groups for tin and antimony chelation through the amido association with the ionized H+ on -COOH of H3L and H2C2O4. The 6 at.% Sb-doped films with film thickness of 600 nm had sheet resistance as low as 42.85 Ω/ when annealed at 450 °C for 10 min. Annealing temperature intensively altered sheet resistance and optimum was in the range of 450-500 °C. The longer annealing time caused Sb volatilization which led to the optimum doping level shifted from 6 to 12 at.%.  相似文献   

13.
We report on Si nanodot formation by chemical vapor deposition (CVD) of ultrathin films and following oxidation. The film growth was carried out by hot-filament assisted CVD of CH3SiH3 and Dy(DPM)3 gas jets at the substrate temperature of 600 °C. The transmission electron microscopy observation and X-ray photoelectron spectroscopy analysis indicated that ∼35 nm Dy-doped amorphous silicon oxycarbide (SiCxOy) films were grown on Si(1 0 0). The Dy concentration was 10-20% throughout the film. By further oxidation at 860 °C, the smooth amorphous film was changed to a rough structure composed of crystalline Si nanodots surrounded by heavily Dy-doped SiO2.  相似文献   

14.
ZnO nanowires were grown on AlN thin film deposited on the glass substrates using a physical vapor deposition method in a conventional tube furnace without introducing any catalysts. The temperature of the substrates was maintained between 500 and 600 °C during the growth process. The typical average diameters of the obtained nanowires on substrate at 600 and 500 °C were about 57 and 22 nm respectively with several micrometers in length. X-ray diffraction and Auger spectroscopy results showed Al diffused from AlN thin film into the ZnO nanowires for the sample grown at 600 °C. Photoluminescence of the nanowires exhibits appearance of two emission bands, one related to ultraviolet emission with a strong peak at 380-382 nm, and the other related to deep level emission with a weak peak at 503-505 nm. The ultraviolet peak of the nanowires grown at 500 °C was blue shifted by 2 nm compared to those grown at 600 °C. This shift could be attributed to surface effect.  相似文献   

15.
Eu2+ and Dy3+ co-doped calcium aluminate, barium aluminate and strontium aluminate phosphors were synthesized at an initiating combustion temperature of 500 °C using urea as an organic fuel. The crystallinity of the phosphors was investigated by using X-ray diffraction (XRD) and the morphology was determined by a scanning electron microscope (SEM). The low temperature monoclinic structure for both CaAl2O4 and SrAl2O4 and the hexagonal structure of BaAl2O4 were observed. The effect of the host materials on the photoluminescence (PL) and phosphorescence properties were investigated by using a He-Cd Laser and a Cary Eclipse fluorescence spectrophotometer, respectively. The broad band emission spectra observed at 449 nm for CaAl2O4:Eu2+, Dy3+, 450 nm (with a shoulder-peak at 500 nm) for BaAl2O4:Eu2+, Dy3+ and 528 nm for SrAl2O4:Eu2+, Dy3+ are attributed to the 4f65d1 to 4f7 transition in the Eu2+ ion in the different hosts.  相似文献   

16.
By electrochemically controlling the structure of the surface aggregates, the grain microstructure has been optimized to yield mesoporous thin films of tungsten oxide (WO3) at the electrode-electrolyte interface in a peroxotungstate sol in the presence of a structure-directing agent (Triton) at room temperature. Apart from the dominant ultrafine nanocrystallites and pores (5-10 nm), well-developed abutting grains (25-100 nm) and nanofibrils also constitute an integral part of the film matrix. X-ray photoemission spectra reveal the as-deposited film (WO3−x) to be constituted by a high proportion of W6+ states with a low oxygen deficiency (x = 0.02). A relatively high W5+ content in the film, upon intercalation of 18 mC cm−2 charge translates into a large coloring efficiency (ηVIS ∼ 70 cm2 C−1) and transmission modulation. At a lithium intercalation level of 22 mC cm−2, in addition to W5+ and W6+ states, the film also comprises of W4+ states. The extremely fast color-bleach kinetics (3 and 2 s, respectively, for a 50% change in transmittance) shown by the as-deposited WO3 film are repercussions of the mesopore morphology, the multiple nanostructures and the sixfold channels of its hexagonal modification. The film shows a high cycling stability as the switching times do not show any significant decline even after 3500 repetitive cycles. Coloration efficiency over the solar and photopic regions and current density for lithium intercalation for the as-deposited film are superior to that observed for the films annealed at 100, 250 and 500 °C. The abysmal electrochromic response of the annealed films is a consequence of surface defects like cracks and uncontrolled densification and pore shrinkage.  相似文献   

17.
Films (∼0.5 mg/cm2) from TiO2 doped with 1-10 mol% Ln3+ (Ln = La or Gd) are deposited on different types of substrates by spray-pyrolysis using ethylene glycol solutions of Ti4+-Ln3+ citric complexes as starting material and O2 as a carrier gas. The films are post-deposition heated at 500 °C. Their phase composition, crystal structure, morphology, sorption ability and photocatalytic activity are studied. Aqueous solution of methylene blue is applied as a model pollutant. A film with 5 mol% La on Ti-coated stainless steel substrate shows significantly higher photocatalytic activity than the best performing samples produced from commercially available titania.  相似文献   

18.
CuInGeSe4 quaternary compounds are known to have a chalcopyrite-like structure and have band gaps of about 1.3 eV, suitable for optimum conversion efficiency for solar cells. We have prepared the CuInGeSe4 thin films by the selenization method using the Cu-In-Ge evaporated layer precursors. The analyses of X-ray diffraction show that the single phase of CuInGeSe4 is obtained by the selenization of precursors at 450-500 °C. The SEM observation of film surface shows that the grain sizes are in the order of 1-2 μm. The band gaps of selenized films close to 1.6 eV are wider than that of bulk crystals (about 1.3 eV). These films have p-type conduction and higher electrical resistivities than more 105 Ω cm at room temperature.  相似文献   

19.
The impact of the ZrO2/La2O3 film thickness ratio and the post deposition annealing in the temperature range between 400 °C and 600 °C on the electrical properties of ultrathin ZrO2/La2O3 high-k dielectrics grown by atomic layer deposition on (1 0 0) germanium is investigated. As-deposited stacks have a relative dielectric constant of 24 which is increased to a value of 35 after annealing at 500 °C due to the stabilization of tetragonal/cubic ZrO2 phases. This effect depends on the absolute thickness of ZrO2 within the dielectric stack and is limited due to possible interfacial reactions at the oxide/Ge interface. We show that adequate processing leads to very high-k dielectrics with EOT values below 1 nm, leakage current densities in the range of 0.01 A/cm2, and interface trap densities in the range of 2-5 × 1012 eV−1 cm−2.  相似文献   

20.
p-Type ZnO thin films have been realized via doping Li as acceptor by using pulsed laser deposition. In our experiment, Li2CO3 was used as Li precursor, and the growth temperature was varied from 400 to 600 °C in pure O2 ambient. The Li-doped ZnO film prepared at 450 °C possessed the lowest resistivity of 34 Ω cm with a Hall mobility of 0.134 cm2 V−1 s−1 and hole concentration of 1.37 × 1018 cm−3. X-ray diffraction (XRD) measurements showed that the Li-doped ZnO films grown at different substrate temperatures were of completely (0 0 2)-preferred orientation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号