首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 73 毫秒
1.
Scanning tunneling microscopy (STM) and spectroscopy (STS) carried out in vacuum and air were used to study the electronic structure of the Au (1 1 1) surface in the range of 0.0-0.7 eV below the Fermi level. The STS experiment carried out in UHV showed the existence of the Shockley surface state (SS) located 0.48 eV below the Fermi level. STS carried out in air showed strong local maximum located 0.35 eV below the Fermi level. This maximum was ascribed to the SS shifted toward lower energy due to carbon and oxygen overlayer. To confirm that the SS could exist on the sample exposed to air we did ultraviolet photoemission spectroscopy (UPS) experiment on air-treated and clean Au (1 1 1). Our results suggest that the SS position initially measured at 0.38 eV below the Fermi level was shifted to 0.27 eV after air treatment. Additionally, the level of contamination was measured using X-ray photoelectron spectroscopy (XPS).  相似文献   

2.
High temperature scanning tunneling spectroscopy (HT-STS) was used to investigate the electronic structure of Au(1 1 1) at different temperatures in the energy range 0-1 eV below the Fermi level. We concentrated on the influence of temperature on the Shockley surface state (SS) appearing on noble metals surface due to a surface projected bulk bang gap in [1 1 1] direction. The influence of temperature on the projected band gap edge (BE) was also investigated. The experiment was carried out in the temperature range 294-580 K. As the result of the experiment a delicate shift of the SS and the BE in direction of the Fermi level was reported.  相似文献   

3.
The atomic structure and charge transfer on the Ge (1 0 5) surface formed on Si substrates are studied using scanning tunneling microscopy and spectroscopy (STM and STS). The bias-dependent STM images of the whole Ge (1 0 5) facets formed on a Ge “hut” structure on Si (0 0 1) are observed, which are well explained by the recently confirmed structure model. The local surface density of states on the Ge (1 0 5) surface is measured by STS. The localization of the electronic states expected from charge transfer mechanism is observed in the dI/dV spectra. The surface band gap is estimated as 0.8-0.9 eV, which is even wider than the bulk bandgap of Ge, indicating the strong charge transfer effect to make the dangling bonds stable. The shape of normalized tunnel conductance agrees with the theoretical band structure published recently by Hashimoto et al.  相似文献   

4.
In attempt to correlate electronic properties and chemical composition of atomic hydrogen cleaned GaAs(1 0 0) surface, high-resolution photoemission yield spectroscopy (PYS) combined with Auger electron spectroscopy (AES) and mass spectrometry has been used. Our room temperature investigation clearly shows that the variations of surface composition and the electronic properties of a space charge layer as a function of atomic hydrogen dose display three successive interaction stages. There exists a contamination etching stage which is observed up to around 250 L of atomic hydrogen dose followed by a transition stage and a degradation stage which is observed beyond 700 L of exposure. In the first stage, a linear shift in the surface Fermi level is observed towards the conduction band by 0.14 eV, in agreement to the observed restoration of the surface stoichiometry and contamination removal. The next stage is characterized by a drop in ionization energy and work function, which quantitatively agrees with the observed Ga-enrichment as well as the tail of the electronic states attributed to the breaking As-dimers. As a result of the strong hydrogenation, the interface Fermi level EF − Ev has been pinned at the value of 0.75 eV what corresponds to the degradation stage of the GaAs(1 0 0) surface that exhibits metallic density of states associated with GaAs antisites defects. The results are discussed quantitatively in terms of the surface molecule approach and compared to those obtained by other groups.  相似文献   

5.
We have investigated the electronic structure of the Yb/Si(1 1 1)-(3 × 2) surface using angle-resolved photoelectron spectroscopy. Five surface states have been identified in the gap of the bulk band projection. Among these five surface state, the dispersions of three of them agree well with those of the surface states of monovalent atom adsorbed Si(1 1 1)-(3 × 1) surfaces. The dispersions of the two other surface states agree well with those observed on the Ca/Si(1 1 1)-(3 × 2) surface, whose basic structure is the same as that of monovalent atom adsorbed Si(1 1 1)-(3 × 1) surfaces. Taking these results into account, we conclude that the five surface states observed in the band gap originate from the orbitals of Si atoms that form a honeycomb-chain-channel structure.  相似文献   

6.
Electronic and magnetic properties of the zincblende CrSb(0 0 1) surfaces and its interfaces with GaSb(0 0 1) and InAs(0 0 1) semiconductors are studied within the framework of the density-functional theory using the FPLAPW+lo approach. We found that the Cr-terminated surfaces retain the half-metallic character, while the half-metallicity is destroyed for the Sb-terminated surfaces due to surface states, which originate from p electrons. The phase diagram obtained through the ab-initio atomistic thermodynamics shows that at phase transition has occurred. Also the half-metallicity character is preserved at both CrSb/GaSb and CrSb/InAs interfaces. The conduction band minimum (CBM) of CrSb in the minority spin case lies about 0.63 eV above that of InAs, suggesting that the majority spin can be injected into InAs without being flipped to the conduction bands of the minority spin. On the other hand the CrSb/GaSb interface has a greater valence band offset (VBO) compared with the CrSb/InAs interface and the minority electrons have lower contribution in the injected currents and hence more efficient spin injection into the GaSb semiconductor. Thus the CrSb/GaSb and CrSb/InAs heterojunctions can be useful in the field of spintronics.  相似文献   

7.
In this work we present the results of comparative XPS and PYS studies of electronic properties of the space charge layer of the L-CVD SnO2 thin films after air exposure and subsequent UHV annealing at 400 °C, with a special emphasis on the interface Fermi level position.From the centre of gravity of binding energy of the main XPS Sn 3d5/2 line the interface Fermi level position EF − Ev in the band gap has been determined. It was in a good correlation with the value estimated from the offset of valence band region of the XPS spectrum, as well as from the photoemission yield spectroscopy (PYS) measurements. Moreover, from the valence band region of the XPS spectrum and PYS spectrum two different types of filled electronic band gap states of the L-CVD SnO2 thin films have been derived, located at 6 and 3 eV with respect to the Fermi level.  相似文献   

8.
In this paper, the InGa-terminated InGaAs(1 0 0) (4 × 2)/c(8 × 2) surface was studied in detail, which turned out to be the most suitable to develop an InGaAs/GaAsSb interface that is as sharp as possible. In ultra high vacuum the InGaAs surface was investigated with low-energy electron diffraction, scanning tunneling microscopy and UV photoelectron spectroscopy employing synchrotron radiation as light source. Scanning the ΓΔX direction by varying the photon energy between 8.5 eV and 50 eV, two surface states in the photoelectron spectra were observed in addition to the valence band peaks.  相似文献   

9.
We report on tunnelling magnetoresistance (TMR), current–voltage (IV) characteristics and low-frequency noise in epitaxially grown Fe(1 1 0)/MgO(1 1 1)/Fe(1 1 0) magnetic tunnel junctions (MTJs) with dimensions from 2×2 to 20×20 μm2. The evaluated MgO energy barrier (0.50±0.08 eV), the barrier width (13.1±0.5 Å) as well as the resistance times area product (7±1 MΩ μm2) show relatively small variation, confirming a high quality epitaxy and uniformity of all MTJs studied. At low temperatures (T<10 K) inelastic electron tunneling spectroscopy (IETS) shows anomalies related to phonons (symmetric structures below 100 meV) and asymmetric features above 200 meV. We explain the asymmetric features in IETS as due to generation of electron standing waves in one of the Fe electrodes. The noise power, though exhibiting a large variation, was observed to be roughly anti-correlated with the TMR. Surprisingly, for the largest junctions we observed a strong enhancement of the normalized low-frequency noise in the antiparallel magnetic configuration. This behavior could be related to the influence of magnetostriction on the characteristics of the insulating barrier through changes in local barrier defects structure.  相似文献   

10.
One-dimensional Si quantum wires have been grown on silver single crystals upon deposition of ∼0.25 monolayer of Si on Ag(1 1 0) surfaces. Scanning tunneling microscopy (STM) clearly shows parallel 1D Si chains along the [−1 1 0] Ag crystallographic direction. Low Energy Electron Diffraction (LEED) confirms the massively parallel assembly of these selforganized Nanowires (NWs). We have characterized these nano-objects by measuring the dispersion of the NWs valence band at room temperature using Angle-Resolved PhotoEmission Spectroscopy (ARPES). Also, the Fermi Surface (FS) of the Ag(1 1 0) substrate has been mapped before and after the silicon deposition, trying to put in evidence the metallic or semiconductor character of the NWs silicon's states close to the Fermi level. Our results show the existence of well-defined quantum states associated to the silicon super-structure. Both LEED and ARUPS results confirm that the NWs have typical 1D features, however their metallic or semiconductor character could not be confirmed.  相似文献   

11.
The adsorption of the chiral modifier cinchonidine on Au(l 1 1) in UHV has been studied by means of TPD, LEED and XPS. In the monolayer the molecule is bound via nitrogen lone pair electrons of its quinoline part rather than via the π-system of this aromatic moiety. Intact molecular desorption is only observed for the multilayers. Decomposition in the first monolayer upon heating occurs above 400 K, indicating a stronger interaction in the monolayer. No long-range ordered structures were observed via LEED. Long-time exposure leads to rearrangement and further stabilization of the first molecular monolayer. Quinoline is bound to gold via the nitrogen lone pair as well. The binding energy of 9.6 kcal/mol is characteristic for physisorption.  相似文献   

12.
The growth of thin K films on Si(1 1 1)-7 × 7 has been investigated by selecting the input and output polarizations of second-harmonic generation (SHG) at room temperature (RT) and at an elevated temperature of 350 °C. The SH intensity at 350 °C showed a monotonic increase with K coverages up to a saturated level, where low energy electron diffraction (LEED) showed a 3 × 1 reconstructed structure. The additional deposition onto the K-saturated surface at 350 °C showed only a marginal change in the SH intensity. These variations are different from the multi-component variations up to 1 ML and orders of magnitude increase due to excitation of plasmons in the multilayers at RT. The variations of SHG during desorption of K at 350 °C showed a two-step decay with a marked shoulder which most likely corresponds to the saturation K coverage of the Si(1 1 1)-3 × 1-K surface. The dominant tensor elements contributing to SHG are also identified for each surface.  相似文献   

13.
Scanning tunnelling microscopy and current imaging tunnelling spectroscopy were used to observe electronic structure of the edges of monolayer graphite film deposited on the Ir(1 1 1) surface. The electronic structure derived from the tunnelling spectra revealed peak in electron local density of states very close to the Fermi level. This electronic state was interpreted in terms of localised edge state caused by the topology of the π electrons networks typical for the zig-zag edges. The observed maximum of local density of states at about 0.2 eV above the Fermi level was ascribed to the presence of resonant state caused by the appearance of disclinations centres in the vicinity of the graphite edges.  相似文献   

14.
The adsorption of fluorescein on the Ag(1 1 0) surface has been investigated by the first-principles pseudopotential method. Various adsorption geometries have been calculated and the energetically most favorable structure of fluorescein/Ag(1 1 0) was identified. The fluorescein molecule, in most favorable structure, is on hollow site, and the adsorption energy is 2.34 eV. Here the adsorption sites refer to the positions at the first layer of the substrate where the middle carbon atom of the fluorescein molecule is located. The bonding strength of the fluorescein molecule to the Ag substrate is site selective, being determined by electron transfer to the oxygen atoms of the molecule and local electrostatic attraction between the oxygen atoms and the silver atoms.  相似文献   

15.
Li adsorption at extremely low coverages on the “metallic” Si(1 1 1)-(7 × 7) surface has been experimentally studied recently by β-NMR experiments. Instead of increasing linearly with the sample temperature, as expected for a metallic system, the relaxation rate α = 1/T1 is almost constant in between 50 K and 300 K sample temperature and rises Arrhenius like above. In order to understand this behaviour in a transparent way a closed form analysis is presented using rectangular density of states distributions. The almost temperature independent relaxation rate below 300 K points to an extremely localized and thus narrow band (width about 10 meV) which pins the Fermi energy. Because of the steeply rising relaxation rate beyond 300 K it is located energetically within a gap (about 380 meV wide) in between a lower filled and an upper empty (Hubbard) band. In dynamical mean field theories based on Hubbard Hamiltonians this kind of density of states is typical for correlated electron systems close to a Mott-Hubbard metal-insulator transition.  相似文献   

16.
In this study, InP(1 0 0) surfaces were bombarded by argon ions in ultra high vacuum. Indium metallic droplets were created in well controlled quantities and played the role of precursors for the nitridation process. A glow discharge cell was used to produce a continuous plasma with a majority of N atomic species. X-ray photoelectron spectroscopy (XPS) studies indicated that the nitrogen combined with indium surface atoms to create InN thin films (two monolayers) on an In rich-InP(1 0 0) surface. This process occurred at low temperature: 250 °C. Synchrotron radiation photoemission (SR-XPS) studies of the valence band spectra, LEED and EELS measurements show an evolution of surface species and the effect of a 450 °C annealing of the InN/InP structures. The results reveal that annealing allows the crystallization of the thin InN layers, while the LEED pattern shows a (4 × 1) reconstruction. As a consequence, InN related structures in EELS and valence bands spectra are different before and after the annealing. According to SR-XPS measurements, the Fermi level is found to be pinned at 1.6 eV above the valence band maximum (VBM).  相似文献   

17.
We investigated the initial Ge nucleation and Ge island growth on a Si(1 1 3) surface using low energy electron microscopy and low energy electron diffraction. The sample temperature was varied systematically between 380 °C and 590 °C. In this range, a strong temperature dependence of the island shape is observed. With increasing temperature the Ge islands are elongated in the direction. Simultaneously, the average island size increases while their density decreases. From the Arrhenius-like behaviour of the island density, a Ge adatom diffusion barrier height of about 0.53 eV is deduced.  相似文献   

18.
The composition and morphology of fluorinated anodic oxide (FAO) films grown on InAs (1 1 1)A in alkaline aqueous (pH 11.5) and acid waterless (pH 1.5) electrolytes are studied by means of X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and high resolution transmission electron microscopy (HRTEM) in order to reveal the passivation mechanism of fluorine on the FAO/InAs(1 1 1)A interface. The formation of the highest oxidation form of As+5 and passivation of defects in the FAO layers during the fluorination process explain the reduction of the density of surface states and unpinning of the Fermi level on the fluorinated AO/InAs(1 1 1)A interface.  相似文献   

19.
The adsorption properties of CO on the epitaxial five-monolayer Co/Cu(1 0 0) system, where the Co overlayer has stabilized in the metastable fcc-phase, are reported. This system is known to exhibit metallic quantum well (MQW) states at energies 1 eV or greater above the Fermi level, which may influence CO adsorption. The CO/fcc-Co/Cu(1 0 0) system was explored with low energy electron diffraction (LEED), inverse photoemission (IPE), reflection-absorption infrared spectroscopy (RAIRS) and temperature programmed desorption (TPD). Upon CO adsorption, a new feature is observed in IPE at 4.4 eV above EF and is interpreted as the CO 2π level. When adsorbed at room temperature, TPD exhibits a CO desorption peak at ∼355 K, while low temperature adsorption reveals additional binding configurations with TPD features at ∼220 K and ∼265 K. These TPD peak temperatures are correlated with different C-O stretch vibrational frequencies observed in the IR spectra. The adsorption properties of this surface are compared to those of the surfaces of single crystal hcp-Co, as well as other metastable thin film systems.  相似文献   

20.
Using density functional theory (DFT) in combination with nudged elastic band (NEB) method, the dissociative chemisorptions and diffusion processes of hydrogen on both pure and Fe-doped Mg(0 0 0 1) surfaces are studied. Firstly, the dissociation pathway of H2 and the relative barrier were investigated. The calculated dissociation barrier (1.08 eV) of hydrogen molecule on a pure Mg(0 0 0 1) surface is in good agreement with comparable experimental and theoretical studies. For the Fe-doped Mg(0 0 0 1) surface, the activated barrier decreases to 0.101 eV due to the strong interaction between the s orbital of H and the d orbital of Fe. Then, the diffusion processes of atomic hydrogen on pure and Fe-doped Mg(0 0 0 1) are presented. The obtained diffusion barrier to the first subsurface is 0.45 eV and 0.98 eV, respectively. Finally, Chou method was used to investigate the hydrogen sorption kinetic mechanism of pure MgH2 and Mg mixed with 5 at.% Fe atoms composites. The obtained activation energies are 0.87 ± 0.02 and 0.31 ± 0.01 eV for H2 dissociation on the pure surface and H atom diffusion in Fe-doped Mg surfaces, respectively. It suggests that the rate-controlling step is dissociation of H2 on the pure Mg surface while it is diffusion of H atom in the Fe-doped Mg surface. And both of fitting data are matching well with our calculation results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号