首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report on first-principles calculations of spin-dependent quantum transport in a CrAs(0 0 1)/AlAs(0 0 1) heterogeneous junction and predict a strong diode effect of charge and spin current. The minority spin current is absolutely inhibited when the bias voltage is applied to the terminals of both CrAs and AlAs. The majority spin current is inhibited when the bias voltage is applied to the terminal of CrAs and “relaxed” when the bias voltage is applied to the terminal of AlAs. The charge and spin current diode are promising for reprogrammable logic applications in the field of spintronics.  相似文献   

2.
Possible formation of stable Au atomic wire on the hydrogen terminated Si(0 0 1): 3×1 surface is investigated under the density functional formalism. The hydrogen terminated Si(0 0 1): 3×1 surface is patterned in two different ways by removing selective hydrogen atoms from the surface. The adsorption of Au on such surfaces is studied at different sub-monolayer coverages. At 4/9 monolayer (ML) coverage, zigzag continuous Au chains are found to be stable on the patterned hydrogen terminated Si(0 0 1): 3×1 surface. The reason for the stability of the wire structures at 4/9 ML coverage is explained. It is to be noted that beyond 4/9 ML coverage, the additional Au atoms may introduce clusters on the surface. The continuous atomic gold chains on the substrate may be useful for the fabrication of atomic scale devices.  相似文献   

3.
We report on tunnelling magnetoresistance (TMR), current–voltage (IV) characteristics and low-frequency noise in epitaxially grown Fe(1 1 0)/MgO(1 1 1)/Fe(1 1 0) magnetic tunnel junctions (MTJs) with dimensions from 2×2 to 20×20 μm2. The evaluated MgO energy barrier (0.50±0.08 eV), the barrier width (13.1±0.5 Å) as well as the resistance times area product (7±1 MΩ μm2) show relatively small variation, confirming a high quality epitaxy and uniformity of all MTJs studied. At low temperatures (T<10 K) inelastic electron tunneling spectroscopy (IETS) shows anomalies related to phonons (symmetric structures below 100 meV) and asymmetric features above 200 meV. We explain the asymmetric features in IETS as due to generation of electron standing waves in one of the Fe electrodes. The noise power, though exhibiting a large variation, was observed to be roughly anti-correlated with the TMR. Surprisingly, for the largest junctions we observed a strong enhancement of the normalized low-frequency noise in the antiparallel magnetic configuration. This behavior could be related to the influence of magnetostriction on the characteristics of the insulating barrier through changes in local barrier defects structure.  相似文献   

4.
The characteristics of Ni/Si(1 0 0) solid-state reaction with Al addition (Ni/Al/Si(1 0 0), Ni/Al/Ni/Si(1 0 0) and Al/Ni/Si(1 0 0)) is studied. Ni and Al films were deposited on Si(1 0 0) substrate by ion beam sputtering. The solid-state reaction between metal films and Si was performed by rapid thermal annealing. The sheet resistance of the formed silicide film was measured by four-point probe method. The X-ray diffraction (XRD) was employed to detect the phases in the silicide film. The Auger electron spectroscopy was applied to reveal the element profiles in depth. The influence of Al addition on the Schottky barrier heights of the formed silicide/Si diodes was investigated by current-voltage measurements. The experimental results show that NiSi forms even with the addition of Al, although the formation temperature correspondingly changes. It is revealed that Ni silicidation is accompanied with Al diffusion in Ni film toward the film top surface and Al is the dominant diffusion species in Ni/Al system. However, no NixAly phase is detected in the films and no significant Schottky barrier height modulation by the addition of Al is observed.  相似文献   

5.
Caesiated InAs(1 1 1)B (1 × 1) and InAs(1 1 1)A (2 × 2) surfaces have been studied by photoelectron spectroscopy. On the InAs(1 1 1)B a new (√3 × √3)R30° reconstruction was observed. During Cs evaporation remarkably small changes are observed in the lone pair states, and no sign of an accumulation layer at the surface can be observed. Instead, the additional charge provided by Cs is rapidly transported towards the bulk. On the InAs(1 1 1)A cesium behaves as a typical electropositive alkali metal donator that enhances the already existing accumulation layer.  相似文献   

6.
We present first-principles studies on the transport properties of oligomers, polyphenyl dithiol, PP(n)DTs, sandwiched between two Al(1 0 0) electrodes. The variation of the current-voltage curve for PP(2)DT in different tilt angles is investigated systematically. The results indicate that PP(2)DT can be functioned as a molecular switch controlled by molecular conformation. We also study the variation of the equilibrium conductance and current-voltage properties of PP(n)DT as a function of n.  相似文献   

7.
The adsorption of the chiral modifier cinchonidine on Au(l 1 1) in UHV has been studied by means of TPD, LEED and XPS. In the monolayer the molecule is bound via nitrogen lone pair electrons of its quinoline part rather than via the π-system of this aromatic moiety. Intact molecular desorption is only observed for the multilayers. Decomposition in the first monolayer upon heating occurs above 400 K, indicating a stronger interaction in the monolayer. No long-range ordered structures were observed via LEED. Long-time exposure leads to rearrangement and further stabilization of the first molecular monolayer. Quinoline is bound to gold via the nitrogen lone pair as well. The binding energy of 9.6 kcal/mol is characteristic for physisorption.  相似文献   

8.
Recently, tetramantane, a member of diamondoid series (C4n+6H4n+12), has shown to exhibit negative-electron-affinity effect which has a potential use for efficient electron emitting devices. Here, we explore the electronic property of adamantane (C10H16), the smallest member of the series. We prepare adamantane films on Si(1 1 1) substrates and then study their electronic structure with photoemission spectroscopy. Photoelectron spectra of adamantane on Si(1 1 1) have shown a peak at low-kinetic energy which could be a generic property of diamondoids. The possibility of the negative-electron-affinity effect in adamantane is further discussed.  相似文献   

9.
We propose a dry method of cleaning Ge(1 0 0) surfaces based on nitrogen plasma treatment. Our in situ Auger electron spectroscopy (AES) and low-energy electron diffraction (LEED) analyses demonstrate that surface contamination remaining after wet treatment was effectively removed by nitrogen radical irradiation at low substrate temperatures. The nitrogen plasma cleaned Ge(1 0 0) surface shows a well-ordered 2 × 1 reconstruction, which indicates the formation of a contamination-free Ge(1 0 0) surface with good crystallinity. We discuss the possible reaction mechanism considering how chemisorbed carbon impurities are removed by selective C-N bond formation and subsequent thermal desorption. These findings imply the advantage of plasma nitridation of Ge surfaces for fabricating nitride gate dielectrics, in which we can expect surface pre-cleaning at the initial stage of the plasma treatment.  相似文献   

10.
We present experimental results on the structural and magnetic properties of series of Fe thin films evaporated onto Si(1 1 1), Si(1 0 0) and glass substrates. The Fe thickness, t, ranges from 6 to110 nm. X-ray diffraction (XRD) and atomic force microscopy (AFM) have been used to study the structure and surface morphology of these films. The magnetic properties were investigated by means of the Brillouin light scattering (BLS) and magnetic force microscopy (MFM) techniques. The Fe films grow with (1 1 0) texture; as t increases, this (1 1 0) texture becomes weaker for Fe/Si, while for Fe/glass, the texture changes from (1 1 0) to (2 1 1). Grains are larger in Fe/Si than in Fe/glass. The effective magnetization, 4πMeff, inferred from BLS was found to be lower than the 4πMS bulk value. Stress induced anisotropy might be in part responsible for this difference. MFM images reveal stripe domain structure for the 110 nm thick Fe/Si(1 0 0) only.  相似文献   

11.
Superfluidity and superconductivity are traditionally understood in terms of an adiabatic continuation from the Bose-gas limit. Here we demonstrate that at least in a 2 + 1D Bose system, superfluidity can arise in a strict quantum field-theoretic setting. Taking the theory of quantum elasticity (describing phonons) as a literal quantum field theory with a bosonic statistic, superfluidity and superconductivity (in the EM charged case) emerge automatically when the shear rigidity of the elastic state is destroyed by the proliferation of topological defects (quantum dislocations). Off-diagonal long range order in terms of the field operators of the constituent particles is not required. This is one of the outcomes of the broader pursuit presented in this paper. In essence, it amounts to the generalization of the well known theory of crystal melting in two dimensions by Nelson et al. [Phys. Rev. B 19 (1979) 2457; Phys. Rev. B 19 (1979) 1855], to the dynamical theory of bosonic states exhibiting quantum liquid-crystalline orders in 2 + 1 dimensions. We strongly rest on the field-theoretic formalism developed by Kleinert [Gauge fields in Condensed Matter, vol. II: Stresses and Defects, Differential Geometry, Crystal Defects, World Scientific, Singapore, 1989] for classical melting in 3D. Within this framework, the disordered states correspond to Bose condensates of the topological excitations, coupled to gauge fields describing the capacity of the elastic medium to propagate stresses. Our focus is primarily on the nematic states, corresponding with condensates of dislocations, under the topological condition that disclinations remain massive. The dislocations carry Burgers vectors as topological charges. Conventional nematic order, i.e., the breaking of space-rotations, corresponds in this field-theoretic duality framework with an ordering of the Burgers vectors. However, we also demonstrate that the Burgers vectors can quantum disorder despite the massive character of the disclinations. We identify the physical nature of the ‘Coulomb nematic’ suggested by Lammert et al. [Phys. Rev. Lett. 70 (1993) 1650; Phys. Rev. E 52 (1995) 1778] on gauge-theoretical grounds. The 2 + 1D quantum liquid crystals differ in fundamental regards from their 3D classical counterparts due to the presence of a dynamical constraint. This constraint is the glide principle, well known from metallurgy, which states that dislocations can only propagate in the direction of their Burgers vector. In the present framework this principle plays a central role. This constraint is necessary to decouple compression rigidity from the dislocation condensate. The shear rigidity is not protected, and as a result the shear modes acquire a Higgs mass in the dual condensate. This is the way the dictum that translational symmetry breaking goes hand in hand with shear rigidity emerges in the field theory. However, because of the glide principle compression stays massless, and the fluids are characterized by an isolated massless compression mode and are therefore superfluids. Glide also causes the shear Higgs mass to vanish at orientations perpendicular to the director in the ordered nematic, and the resulting state can be viewed as a quantum smectic of a novel kind. Our most spectacular result is a new hydrodynamical way of understanding the conventional electromagnetic Meissner state (superconducting state). Generalizing to the electromagnetically charged elastic medium (‘Wigner Crystal’) we find that the Higgs mass of the shear gauge fields, becoming finite in the nematic quantum fluids, automatically causes a Higgs mass in the electromagnetic sector by a novel mechanism.  相似文献   

12.
The growth of thin K films on Si(1 1 1)-7 × 7 has been investigated by selecting the input and output polarizations of second-harmonic generation (SHG) at room temperature (RT) and at an elevated temperature of 350 °C. The SH intensity at 350 °C showed a monotonic increase with K coverages up to a saturated level, where low energy electron diffraction (LEED) showed a 3 × 1 reconstructed structure. The additional deposition onto the K-saturated surface at 350 °C showed only a marginal change in the SH intensity. These variations are different from the multi-component variations up to 1 ML and orders of magnitude increase due to excitation of plasmons in the multilayers at RT. The variations of SHG during desorption of K at 350 °C showed a two-step decay with a marked shoulder which most likely corresponds to the saturation K coverage of the Si(1 1 1)-3 × 1-K surface. The dominant tensor elements contributing to SHG are also identified for each surface.  相似文献   

13.
Oxidation of Cu3Au(1 1 0) using a hyperthermal O2 molecular beam (HOMB) was investigated by X-ray photoemission spectroscopy in conjunction with a synchrotron light source. From the incident energy dependence of the O-uptake curve, the precursor-mediated dissociative adsorption occurs, where the trapped O2 molecule can migrate and dissociate at the lower activation-barrier sites, dominantly at thermal O2 exposures. Dissociative adsorption of O2 on Cu3Au(1 1 0) is as effective at the thermal O2 exposure as on Cu(1 1 0). On the other hand, at the incident energies of HOMB where the direct dissociative adsorption is dominant, it was determined that the dissociative adsorption of O2 implies a higher activation barrier and therefore less reactivity due to the Au alloying in comparison with the HOMB oxidation of Cu(1 1 0). The dissociative adsorption progresses with the Cu segregation on Cu3Au(1 1 0) similarly as on Cu3Au(1 0 0). The growth of Cu2O for 2 eV HOMB suggests that the diffusion of Cu atoms also contribute to the oxidation process through the open face, which makes the difference from Cu3Au(1 0 0).  相似文献   

14.
The adsorption of fluorescein on the Ag(1 1 0) surface has been investigated by the first-principles pseudopotential method. Various adsorption geometries have been calculated and the energetically most favorable structure of fluorescein/Ag(1 1 0) was identified. The fluorescein molecule, in most favorable structure, is on hollow site, and the adsorption energy is 2.34 eV. Here the adsorption sites refer to the positions at the first layer of the substrate where the middle carbon atom of the fluorescein molecule is located. The bonding strength of the fluorescein molecule to the Ag substrate is site selective, being determined by electron transfer to the oxygen atoms of the molecule and local electrostatic attraction between the oxygen atoms and the silver atoms.  相似文献   

15.
The electrical and magnetic properties of thin iron (Fe) films have sparked significant scientific interest. Our interest, however, is in the fundamental interactions between light and matter. We have discovered a novel application for thin Fe films. These films are sources of terahertz (THz) radiation when stimulated by an incident laser pulse. After intense femtosecond pulse excitation by a Ti:sapphire laser, these films emit picosecond, broadband THz frequencies. The terahertz emission provides a direct measure of the induced ultrafast change in magnetization within the Fe film. The THz generation experiments and the growth of appropriate thin Fe films for these experiments are discussed. Several criteria are used to select the substrate and film growth conditions, including that the substrate must permit the epitaxial growth of a continuous, monocrystalline or single crystal film, yet must also be transparent to the emitted THz radiation. An Fe(0 0 1) film grown on the (0 0 1) surface of a magnesium oxide (MgO) substrate makes an ideal sample. The Fe films are grown by physical vapor deposition (PVD) in an ultrahigh vacuum (UHV) system. Low energy electron diffraction (LEED) and Auger electron spectroscopy (AES) are used to characterize the Fe(0 0 1) films. Two substrate surface preparation methods are investigated. Fe(0 0 1) films grown on MgO(0 0 1) substrates that are used as-received and films grown on MgO(0 0 1) substrates that have been UV/ozone-cleaned ex vacuo and annealed in vacuo produce the same results in the THz generation experiments. Either substrate preparation method permits the growth of samples suitable for the THz emission experiments.  相似文献   

16.
Density functional theory calculations have been applied to investigate the adsorption geometry of water overlayers on the NaCl(1 0 0) surface in the monolayer regime. Competition between H-H intermolecular repulsion and the attraction of the polar molecules to the surface ions results in the most stable structure having a 2 × 1 adsorption symmetry with an adsorption energy of 415 meV. Overlayers of 1 × 1 symmetry, as observed in experiment, have slightly lower adsorption energies. The layers are also unstable with respect to rotation of individual molecules. Multiple hydrogens/oxygens interacting with a single substrate ion can pull that ion out of the surface, although the examples considered are energetically very unfavourable. Overlayers of 1 × 1 symmetry with a coverage of one water molecule per NaCl do not have a high enough adsorption energy to wet the surface.  相似文献   

17.
In this paper, we present a combined STM and EPR study on the adsorption and self-organization of monolayers formed from 2-(14-Carboxytetradecyl)-2-ethyl-4,4-dimethyl-3-oxazolidinyloxy (16DS) and 4′,4′-Dimethylspiro(5α-cholestane-3,2′-oxazolidin)-3′-yloxy (CSL) adsorbed on a highly oriented pyrolitic graphite HOPG(0 0 0 1) substrate. Both 16DS and CSL molecules are persistent free radicals containing a paramagnetic doxyl group. The STM measurements of 16DS on HOPG(0 0 0 1) were performed at the liquid-solid interface while the studies of CSL on HOPG(0 0 0 1) were carried out under ultrahigh vacuum conditions. It was found that the 16DS molecules on the HOPG(0 0 0 1) surface form a highly-ordered monolayer with a domain structure. The high-resolution STM images show structural details of 16DS molecules on HOPG(0 0 0 1) revealing the paramagnetic doxyl group. In contrast, CSL molecules on HOPG(0 0 0 1) form a well-ordered monolayer without domain structure. The EPR results indicate that both compounds deposited on HOPG(0 0 0 1) substrate are not reduced and retain their paramagnetic character. We believe that the molecular systems described can be used in single spin detection experiments using an electron spin noise-scanning tunnelling microscopy (ESN-STM) technique. In particular, the possibility of obtaining contrast spin signals from the paramagnetic and diamagnetic parts of molecules increases the significance of our results.  相似文献   

18.
Pd-Cu bimetallic surfaces formed through a vacuum-deposition of Pd on Cu(1 1 1) have been discussed on the basis of carbon monoxide (CO) adsorption: CO is used as a surface probe and infrared reflection absorption (IRRAS) spectra are recorded for the CO-adsorbed surfaces. Low energy electron diffraction (LEED) patterns for the bimetallic surfaces reveal six-fold symmetry even after the deposition of 0.6 nm. The lattice spacings estimated by the separations of reflection high-energy electron diffraction (RHEED) streaks increase with increasing Pd thickness. Room-temperature CO exposures to the bimetallic surfaces formed by the Pd depositions less than 0.3 nm thickness generate the IRRAS bands due to the three-fold-hollow-, bridge- and linear-bonded CO to Pd atoms. In particular, on the 0.1 nm-thick Pd surface, the linear-bonded CO band becomes apparent at an earlier stage of the exposure. In contrast, the bridge-bonded CO band dominates the IRRAS spectra for CO adsorption on the 0.6 nm-thick Pd surface, at which the lattice spacing corresponds to that of Pd(1 1 1). A 90 K-CO exposure to the 0.1 nm-thick Pd surface leads to the IRRAS bands caused not only by CO-Pd but also by CO-Cu, while the Cu-related band is almost absent from the spectra for the 0.3 nm-thick Pd surface. The results clearly reveal that local atomic structures of the outermost bimetallic surface can be discussed by the IRRAS spectra for the probe molecule.  相似文献   

19.
We have investigated the electronic structure of the Yb/Si(1 1 1)-(3 × 2) surface using angle-resolved photoelectron spectroscopy. Five surface states have been identified in the gap of the bulk band projection. Among these five surface state, the dispersions of three of them agree well with those of the surface states of monovalent atom adsorbed Si(1 1 1)-(3 × 1) surfaces. The dispersions of the two other surface states agree well with those observed on the Ca/Si(1 1 1)-(3 × 2) surface, whose basic structure is the same as that of monovalent atom adsorbed Si(1 1 1)-(3 × 1) surfaces. Taking these results into account, we conclude that the five surface states observed in the band gap originate from the orbitals of Si atoms that form a honeycomb-chain-channel structure.  相似文献   

20.
Using density functional theory (DFT) in combination with nudged elastic band (NEB) method, the dissociative chemisorptions and diffusion processes of hydrogen on both pure and Fe-doped Mg(0 0 0 1) surfaces are studied. Firstly, the dissociation pathway of H2 and the relative barrier were investigated. The calculated dissociation barrier (1.08 eV) of hydrogen molecule on a pure Mg(0 0 0 1) surface is in good agreement with comparable experimental and theoretical studies. For the Fe-doped Mg(0 0 0 1) surface, the activated barrier decreases to 0.101 eV due to the strong interaction between the s orbital of H and the d orbital of Fe. Then, the diffusion processes of atomic hydrogen on pure and Fe-doped Mg(0 0 0 1) are presented. The obtained diffusion barrier to the first subsurface is 0.45 eV and 0.98 eV, respectively. Finally, Chou method was used to investigate the hydrogen sorption kinetic mechanism of pure MgH2 and Mg mixed with 5 at.% Fe atoms composites. The obtained activation energies are 0.87 ± 0.02 and 0.31 ± 0.01 eV for H2 dissociation on the pure surface and H atom diffusion in Fe-doped Mg surfaces, respectively. It suggests that the rate-controlling step is dissociation of H2 on the pure Mg surface while it is diffusion of H atom in the Fe-doped Mg surface. And both of fitting data are matching well with our calculation results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号