首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this work is to study the effects of duty ratio on the growth mechanism of the ceramic coatings on Ti-6Al-4V alloy prepared by pulsed single-polar MPO at 50 Hz in NaAlO2 solution. The phase composition of the coatings was studied by X-ray diffraction, and the morphology and the element distribution in the coating were examined through scanning electron microscopy and energy dispersive spectroscopy. The thickness of the coatings was measured by eddy current coating thickness gauge. The corrosion resistance of the coated samples was examined by linear sweep voltammetry technique in 3.5% NaCl solution. The changes of the duty ratio (D) of the anode process led to the changes of the mode of the spark discharge during the pulsed single-polar MPO process, which further influenced the structure and the morphology of the ceramic coatings. The coatings prepared at D = 10% were composed of a large amount of Al2TiO5 and a little γ-Al2O3 while the coatings prepared at D = 45% were mainly composed of α-Al2O3 and γ-Al2O3. The coating thickness and the roughness were both increased with the increasing D due to the formation of Al2O3. The formation of Al2TiO5 resulted from the spark discharge due to the breakdown of the oxide film, while the formation of Al2O3 resulted from the spark discharge due to the breakdown of the vapor envelope. The ceramic coatings improved the corrosion resistance of Ti-6Al-4V alloy. And the surface morphology and the coating thickness determined the corrosion resistance of the coated samples prepared at D = 45% was better than that of the coated samples prepared at D = 10%.  相似文献   

2.
The aim of this work is to discuss the growth characteristics of the ceramic coatings on Ti alloy by plasma electrolytic oxidation (PEO) technique. Ceramic coatings were prepared on Ti alloy by plasma electrolytic oxidation in different electrolyte solutions under different pulse modes. The composition and the structure of the coatings were investigated by X-ray diffraction and scanning electron microscopy (SEM), respectively. The amount of the dissolved titanium into the electrolytes during PEO process was measured by inductively coupled plasma-atomic emission spectrometer (ICP-AES). The structure and the composition of the coatings were related to the mode of the spark discharge during PEO process. (a) Under the pulsed single-polar mode: In Na3PO4 solution, the spark discharge was mainly due to the breakdown of the oxide film, and the coatings prepared were porous and mainly structured by the Ti from the substrate. In K4ZrF6-H3PO4 and NaAlO2-Na3PO4 solutions, the main mode of the spark discharge was the breakdown of the oxide film at the initial stage, and then changed into the breakdown of the vapor envelope, and the coatings were rough and thick, and mainly structured by the elements from the electrolyte. (b) Under the pulsed bi-polar mode in NaAlO2-Na3PO4 solution, the spark discharge may be mainly due to the breakdown of the oxide film, the coatings prepared were dense in inner layer and loose in outer layer, and structured by the elements from both the substrate and the electrolyte. Besides, the ICP-AES analyses showed that the amount of the dissolved titanium in the electrolyte during PEO process was more under the breakdown of the oxide film than under the breakdown of the vapor envelope, which was consistent with the changes of the structure of the coatings. Cathode pulse in the pulsed bi-polar mode increased the amount of the dissolved titanium in the electrolyte, compared with the pulsed single-polar one.  相似文献   

3.
A single electro-discharge-sintering (EDS) pulse (1.0 kJ/0.7 g), from a 300 (F capacitor, was applied to atomized spherical Ti-6Al-4V powder in air to produce microporous compact. A solid core surrounded by a porous layer was self-assembled by a discharge in the middle of the compact. X-ray photoelectron spectroscopy was used to study the surface characteristics of the compact material. C, N, O and Ti were the main constituents, with smaller amounts of Al and V. The surface was lightly oxidized and was primarily in the form of TiO2. A lightly etched EDS sample showed the surface form of metallic Ti, indicating that EDS breaks down the oxide film of the as-received Ti-6Al-4V powder during the discharge process. The EDS Ti-6Al-4V compact surface also contained small amounts of TiN in addition to TiO2, resulting in the reaction between nitrogen in air and the Ti substrate in times as short as 125 μs.  相似文献   

4.
In situ formation of Al2O3-SiO2-SnO2 composite ceramic coating on Al-20%Sn alloy was successfully fabricated in aqueous Na2SiO3 electrolyte by microarc oxidation technology. The compositions, structure, mechanical and tribological properties of the composite coating were detailed studied by scanning electron microscope, energy dispersive spectroscopy, X-ray diffraction, hardness tester and ball-on-disc friction tester. It is found that the species originating from the Al-20%Sn alloy substrate and the electrolyte solution both participate in reaction and contribute to the composition of the coating, which results in the generated coating firmly adherent to the substrate. The composite ceramic coating can greatly improve the microhardness and tribological property of Al-20%Sn alloy.  相似文献   

5.
TiO2 films were loaded on aluminium substrates by dip-coating method. Based on cyclic photocatalytic degradation experiments using benzamide as model molecule, XPS and AFM tests, the deactivating behaviour of the samples was studied. Experiment results show that the samples with less coating times (one to four times) deactivated very quickly, while the samples coated more than five times did not lose activity. Al element was proved to segregate from substrate and diffuse into TiO2 films during calcination and annealing treatment, existing as mixture of Al2O3 and Al(OH)3 at the boundaries among TiO2 particles. During photocatalytic reactions in aqueous phase, the transformation of Al from Al2O3 to Al(OH)3 and the leaching of the latter brought out serious alternation of surface morphology to the samples coated one to three times, on whose surface Ti3+ and Ti2+ centers were also detected after six cycles of photocatalytic reactions, while fresh films and the tested films which did not deactivate possess unique +4 valence Ti. The alteration of surface morphology, together with the change of valence of surface Ti element, resulted in the deactivation encountered in this research.  相似文献   

6.
The laser clad coating technique can help to produce metallurgical bonding with high bonding strength between the coating layer and the substrate, which has been gradually applied for hydroxyapatite (HA) coating on metallic substrates. In this study, HA powder is mixed with two different binders, namely water glass (WG) and polyvinyl alcohol (PVA), respectively, and is then clad on Ti-6Al-4V substrates using an Nd:YAG laser system under various processing conditions. The microstructure, chemical composition and hardness of the coating layer and transition layer of the various samples are then systematically explored. The experimental results show that the coating layers of the various samples all contain both cellular dendrites and rod-like piled structures, while the transition layers contain only cellular dendrites. For all samples, the coating layer consists mostly of CaTiO3, Ca2P2O7, CaO and HA phases, whereas the transition layer contains primarily CaTiO3, Ca2P2O7, Ti3P, Ti and HA phases. In addition, the transition layer of the WG samples also contains SiO2 and Si2Ti phases. In all of the specimens, the transition layer has a higher average hardness than the substrate or coating layer. Moreover, the transition layer in the WG sample is harder than that in the PVA sample.  相似文献   

7.
To alleviate the cavitation damage of metallic engineering components in hydrodynamic systems operating in marine environments, a NbN nanoceramic coating was synthesized on to a Ti-6Al-4V substrate via a double cathode glow discharge technique. The microstructure of the coating consisted of a ~13 μm thick deposition layer of a hexagonal δ′-NbN phase and a diffusion layer ~2 μm in thickness composed of face-centered cubic (fcc) B1-NaCl–structured (Ti,Nb)N. The NbN coating not only exhibited higher values of H/E and H2/E than those measured from NbN coatings deposited by other techniques, but also possessed good adhesion to the substrate. The cavitation erosion resistance of the NbN coating in a 3.5 wt% NaCl solution was investigated using an ultrasonic cavitation-induced apparatus combined with a range of electrochemical test methods. Potentiodynamic polarization measurements demonstrated that the NbN coated specimens demonstrated both a higher corrosion potential (Ecorr) and lower corrosion current density (icorr) than the uncoated substrate. Mott-Schottky analysis, combined with the point defect model (PDM), revealed that, for a given cavitation time, the donor density (ND) of the passive film on the NbN coating was reduced by 1 ~ 2 orders of magnitude relative to the uncoated Ti-6Al-4V, and the diffusivity of the point defects (D0) in the passive film grown on the NbN coating was nearly one order of magnitude lower than that on the uncoated substrate. In order to better understand the experimental observations obtained from Mott-Schottky analysis and double-charge layer capacitance measurements, first-principles density-functional theory was employed to calculate the energy of vacancy formation and the adsorption energy for chloride ions for the passive films present on both the NbN coating and bare Ti-6Al-4V.  相似文献   

8.
Plasma sprayed nanostructured coatings were successfully fabricated on a titanium alloy (Ti-6Al-4V) substrate using the as-prepared nanostructured Al2O3-13wt%TiO2 feedstock. A CO2 laser was used to remelt the plasma sprayed coatings. The effects of laser remelting on the phase constituents, microstructure and properties of the ceramic coatings were investigated. The laser remelted coatings (LRmC) possessed a much denser and more homogenous structure and excellent metallurgical bonding to the substrate. The average porosity of the LRmC was reduced to 0.9%, compared with 6.2% of the as-sprayed coatings. The net-like structure in the as-prepared feedstock remained in the coatings before and after laser remelting. The metastable γ-Al2O3 phase in the as-sprayed coatings transformed to stable α-Al2O3 during laser remelting. The LRmC could remain nanostructure. The microhardness of the coatings was enhanced to 1000-1400 HV0.3 after laser remelting, which was much higher than that of the plasma sprayed coatings and 2-3 times higher that of the substrate. Significant decreases in surface roughness were also found in the LRmC.  相似文献   

9.
Laser cladding of the Al + TiC alloy powder on Ti-6Al-4V alloy can form the Ti3Al/TiAl + TiC ceramic layer. In this study, TiC particle-dispersed Ti3Al/TiAl matrix ceramic layer on the Ti-6Al-4V alloy by laser cladding has been researched by means of X-ray diffraction, scanning electron microscope, electron probe micro-analyzer, energy dispersive spectrometer. The main difference from the earlier reports is that Ti3Al/TiAl has been chosen as the matrix of the composite coating. The wear resistance of the Al + 30 wt.% TiC and the Al + 40 wt.% TiC cladding layer was approximately 2 times greater than that of the Ti-6Al-4V substrate due to the reinforcement of the Ti3Al/TiAl + TiC hard phases. However, when the TiC mass percent was above 40 wt.%, the thermal stress value was greater than the materials yield strength limit in the ceramic layer, the microcrack was present and its wear resistance decreased.  相似文献   

10.
A single electro-discharge-sintering (EDS) pulse (0.7-2.0 kJ/0.7 g), from a 300 μF capacitor, was applied to atomized spherical Ti-6Al-4V powder in a vacuum to produce a porous-surfaced implant compact. A solid core surrounded by a porous layer was formed by a discharge in the middle of the compact. X-ray photoelectron spectroscopy was used to study the surface characteristics of the implant material. C, O, and Ti were the main constituents, with smaller amounts of Al, V, and N. The implant surface was lightly oxidized and was primarily in the form of TiO2 with a small amount of metallic Ti. A lightly etched EDS implant sample showed the surface form of metallic Ti, indicating that EDS breaks down the oxide film of the as-received Ti-6Al-4V powder during the discharge process. The EDS Ti-6Al-4V implant surface also contained small amounts of aluminum oxide in addition to TiO2. However, V detected in the EDS Ti-6Al-4V implant surface did not contribute to the formation of the oxide film. The small amount of N in the implant surface resulted from nitride material that was also found in the as-received Ti-6Al-4V powders.  相似文献   

11.
《Current Applied Physics》2010,10(2):698-702
Ceramic coatings were prepared in Na2SiO3–Na2CO3–NaOH system by pulsed bi-polar plasma electrolytic oxidation on Ti–6Al–4V alloy. The phase composition, structure and the elemental distribution of the coatings were studied by XRD, SEM and energy dispersive spectroscopy, respectively. The thermal shock resistance of the coated samples at 850 °C was evaluated by the thermal shock tests. The high temperature oxidation resistance of the coating samples at 500 °C was investigated. The results showed that the coating was mainly composed of rutile- and anatase TiO2, Increasing the concentration of Na2SiO3, TiO2 content decreased gradually while the thickness of the coating increased. There were a large amount of micro pores and sintered particles on the surface of the coatings. Increasing concentration of Na2SiO3, the sintered particles on the surface turned large, and the Si content increased while the Ti content decreased gradually. When the concentration of Na2SiO3 was 15 g/L, the thermal shock resistance of the coatings was better than that of the coatings that prepared under other Na2SiO3 concentrations. The coating samples prepared under the optimized technique process based on the thermal shock tests improved the high temperature oxidation resistance at 500 °C greatly, whether considering the isothermal oxidation or the cyclic oxidation.  相似文献   

12.
Composite coatings using pure Al powder blended with α-Al2O3 as feedstock were deposited on AZ91D magnesium alloy substrates by cold spray (CS). The content of α-Al2O3 in the feedstock was 25 wt.% and 50 wt.%, respectively. The effects of α-Al2O3 on the porosity, microhardness, adhesion and tensile strength of the coatings were studied. Electrochemical tests were carried out in neutral 3.5 wt.% NaCl solution to evaluate the effect of α-Al2O3 on the corrosion behavior of the coatings. The results showed that the composite coatings possessed lower porosity, higher adhesion strength and tensile strength than cold sprayed pure Al coating. The corrosion current densities of the composite coatings were similar to that of the pure Al coating and much higher than that of bare AZ91D magnesium alloy.  相似文献   

13.
Ti-6Al-4V alloy was treated with various concentrations (5 wt.%, 15 wt.% and 25 wt.%) of hydrogen peroxide (H2O2) and then heat treated to produce an anatase titania layer. The surface modified substrates were immersed in simulated body fluid (SBF) solution for the growth of an apatite layer on the surface and the formed apatite layer was characterized using various surface characterization techniques. The results revealed that titania layer with anatase nature was observed for all H2O2 treated Ti-6Al-4V alloy, irrespective of the H2O2 concentrations. Ti-6Al-4V alloy treated with 15 wt.% and 25 wt.% of H2O2 induced apatite formation, however 5 wt.% of H2O2 treated Ti-6Al-4V failed to form apatite layer on the surface. The electrochemical behaviour of H2O2 treated specimens in SBF solution was studied using potentiodynamic polarization and electrochemical impedance spectroscopy. Ti-6Al-4V alloy treated with 25 wt.% of H2O2 solution exhibited low current density and high charge transfer resistance values compared to specimens treated with other concentrations of H2O2 and untreated Ti-6Al-4V alloy.  相似文献   

14.
In this work, novel zirconium incorporated Ca-Si based ceramic powder Ca3ZrSi2O9 was synthesized. The aim of this study was to fabricate Ca3ZrSi2O9 coating onto Ti-6Al-4V substrate using atmospheric plasma-spraying technology and to evaluate its potential applications in the fields of orthopedics and dentistry. The phase composition, surface morphologies of the coating were examined by XRD and SEM, which revealed that the Ca3ZrSi2O9 coating was composed of grains around 100 nm and amorphous phases. The bonding strength between the coating and the substrate was 28 ± 4 MPa, which is higher than that of traditional HA coating. The dissolution rate of the coating was assessed by monitoring the ions release and mass loss after immersion in the Tris-HCl buffer solution. The in vitro bioactivity of the coating was determined by observing the formation of apatite on its surface in simulated body fluids. It was found that the Ca3ZrSi2O9 coating possessed both excellent chemical stability and good apatite-formation ability, suggesting its potential use as bone implants.  相似文献   

15.
When the Ti-6Al-4V alloy is overaged at 500-600°C, nanometer-sized α2 (Ti3Al) particles can be homogeneously precipitated inside a phases, thereby leading to strength improvement. Widmanstätten and equiaxed microstructures containing fine α2 (Ti3Al) particles were obtained by overaging the Ti-6Al-4V alloy. Precipitation of α2 (Ti3Al) particles was monitored using thermoelectric power measurements for different aging conditions in the Ti-6Al-4V alloy. Overaging heat treatments were conducted at 515, 545 and 575°C for different aging times. In addition, overaging samples were examined by optical microscopy, scanning electron microscopy and hardness measurements. It was found that the thermoelectric power is very sensitive to the aging process in the two studied Ti-6Al-4V structures.  相似文献   

16.
Based on large amount of experimental observations, the effects of metal reactivity and oxide films at particle surfaces on coating deposition behavior in cold spraying were presented and discussed. The oxygen contents in as-sprayed Ti, Ti-6Al-4V and Al coatings were higher than those in the corresponding starting powders. The obvious flashing jets outside nozzle exit during deposition of Ti and Ti-6Al-4V were caused by the reaction of the particles with oxygen in the entrained or the adopted air. For Ti and Ti-6Al-4V coatings, their porous structures are predominantly attributed to the surface reactivity (defined as reactivity with oxygen). This surface reaction could be helpful for formation of a metallurgical bonding between the deposited particles. For Al, even though it is more reactive than Ti, the oxide films at Al particle surfaces suppress the surface activity.  相似文献   

17.
Ti6Al7Nb has been used as an implant material because of its good corrosion resistance and high mechanical properties. However, the presence of aluminium (Al), which may lead to ostemalacia, anaemia and nervous system disorders, limited its wide clinical use. In this study, a titanium oxide (TiO2) nanoporous layer was fabricated on a Ti6Al7Nb alloy using an electrochemical anodic oxidation method. The structure of the TiO2 nanoporous layer was examined by scanning electron microscopy. The chemical compositions of the samples were analysed by X-ray photoelectron spectroscopy (XPS). Biocompatibility was evaluated by culturing rat osteoblast cells. The result showed that TiO2 nanoporous layers comprise a mixed oxide containing TiO2 and a small amount of nobium oxides (Nb2O5) and almost no elemental aluminium. The outer layer of the TiO2 nanoporous layer comprises highly ordered nanotubes and the inner layer forms disordered nanopores. The TiO2 nanoporous layer could support the adhesion, proliferation, differentiation and gene expression of osteoblast cells. Therefore, a TiO2 nanoporous layer could enhance the biocompatibility of Ti6Al7Nb alloy and is as a promising candidate for Ti6Al7Nb alloy implants.  相似文献   

18.
In this paper, ceramic coatings were prepared on biomedical NiTi alloys by micro-arc oxidation (MAO) in constant voltage mode. The current density-time response was recorded during the MAO process. The microstructure, element distribution and phase composition of the coatings prepared at different MAO treatment times were investigated by scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), thin-film X-ray diffraction (TF-XRD) and X-ray photoelectron spectroscopy (XPS). The corrosion behavior of the coatings in 0.9% NaCl solution was evaluated by the potentiodynamic polarization test. It is found that the coatings become more compact with increasing the MAO treatment time, and the growth rate of coating decreases. The results of TF-XRD, EDS and XPS indicate that the coatings are composed of a large amount of γ-Al2O3 and a little α-Al2O3, TiO2 and Ni2O3. The Ni content of the coatings is about 3 at.%, which is greatly lower than that of NiTi substrate. The bonding strength of coating-substrate is higher than 40 MPa for all the samples in this study. The corrosion resistance of the coatings is about two orders of magnitude higher than that of the uncoated NiTi alloy.  相似文献   

19.
Ceramic coatings were formed by plasma electrolytic oxidation (PEO) on aluminized steel. Characteristics of the average anodic voltages versus treatment time were observed during the PEO process. The micrographs, compositions and mechanical properties of ceramic coatings were investigated. The results show that the anodic voltage profile for processing of aluminized steel is similar to that for processing bulk Al alloy during early PEO stages and that the thickness of ceramic coating increases approximately linearly with the Al layer consumption. Once the Al layer is completely transformed, the FeAl intermetallic layer begins to participate in the PEO process. At this point, the anodic voltage of aluminized steel descends, and the thickness of ceramic coating grows more slowly. At the same time, some micro-cracks are observed at the Al2O3/FeAl interface. The final ceramic coating mainly consists of γ-Al2O3, mullite, and α-Al2O3 phases. PEO ceramic coatings have excellent elastic recovery and high load supporting performance. Nanohardness of ceramic coating reaches about 19.6 GPa.  相似文献   

20.
Plasma electrolytic oxidation (PEO) is a cost-effective technique that can be used to prepare ceramic coatings on metals such as Ti, Al, Mg, Nb, etc., and their alloys, but this promising technique cannot be used to modify the surface properties of steels, which are the most widely used materials in engineering. In order to prepare metallurgically bonded ceramic coatings on steels, a combined technique of arc spraying and plasma electrolytic oxidation (PEO) was adopted. In this work, metallurgically bonded ceramic coatings on steels were obtained using this method. We firstly prepared aluminum coatings on steels by arc spraying, and then obtained the metallurgically bonded ceramic coatings on aluminum coatings by PEO. The characteristics of duplex coatings were analyzed by X-ray diffractometer (XRD) and scanning electron microscopy (SEM). The corrosion and wear resistance of the ceramic coatings were also studied. The results show that, duplex Al2O3/aluminum coatings have been deposited on steel substrate after the combined treatment. The ceramic coatings are mainly composed of α-Al2O3, γ-Al2O3, θ-Al2O3 and some amorphous phase. The duplex coatings show favorable corrosion and wear resistance properties. The investigations indicate that the combination of arc spraying and plasma electrolytic oxidation proves a promising technique for surface modification of steels for protective purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号