共查询到20条相似文献,搜索用时 20 毫秒
1.
Cluster models were used to represent the β-type cationic sites of the protonated beta zeolite (H-BEA) and the loading of PdO on these sites. The properties of these clusters and the cleavage of methane CH bond over these clusters were studied using density functional theory (DFT) method. The stability of H-BEA was enhanced due to the formation of hydrogen bonds. After PdO loading, the Pd atom bonds to four oxygen atoms among which three H-BEA framework oxygen atoms are included to form an approximate planar structure with Pd in the centre. This structure is very similar to that of bulk PdO. The acidic proton of H-BEA and the oxygen atom of PdO participate in the cleavage of methane CH bond, indicating that PdO is the active species for the activation of methane. Over the clusters constructed in the present work, the calculated energy barriers for the cleavage of methane CH bond are in the region between 17.54 and 21.02 kcal mol−1. 相似文献
2.
The pressure and temperature dependence of 13C NMR of CO2 adsorbed in several porous materials was measured. For CO2 in activated carbon fiber (ACF), the spectrum observed in the pressure range from 0 to 10 MPa consisted of two lines. A very sharp peak at δ = 126 ppm was attributed to free CO2 gas and a broad peak at δ = 123 ppm was attributed to confined CO2 molecules in the micropores of ACF, although CO2 in microporous materials such as zeolites and mesoporous silica, gave only a single peak attributed to free CO2 gas. In the low-pressure region, the peak at δ = 123 ppm shifted to 118 ppm and a very broad peak with a line width of about 200 ppm appeared. This indicates that there are two kinds of CO2 molecules confined in ACF with different rates of molecular motion: one is undergoing isotropic rotation and the other is undergoing anisotropic motion, which rotates around an axis tilted by 30° from the molecular axis. This implies that small pockets with a characteristic diameter exist on the surface of the ACF micropore. 相似文献
3.
The ethylene adsorption of Turkey clinoptilolite-rich tuff from Gordes and Bigadic region of western of Anatolia and their exchanged forms (K+, Na+ and Ca2+) were investigated. The clinoptilolite samples were characterized using XRD, TG-DTA and nitrogen adsorption methods. Adsorption isotherms for ethylene on natural and modified forms of both adsorbents at 277 K and 293 K were obtained at pressures up to 38 kPa. Uptake of ethylene increased as Na-CLN < Ca-CLN < K-CLN < Natural CLN for Gordes zeolite at 277 K, 293 K and for Bigadic zeolite at 277 K. For Bigadic zeolites at 293 K, uptake of ethylene increased in the order Ca-CLN < Na-CLN < K-CLN < Natural CLN. It was found that ethylene adsorption capacity of Bigadic clinoptilolite samples was much greater than Gordes clinoptilolite samples except K+ modified forms at both temperatures. These results show that both natural clinoptilolites have a considerable potential for the removal of ethylene. 相似文献
4.
Reliably acting diffusion barrier films are basically for the functionality of the copper inter-connect technology. Tantalum (Ta) and Tantalum nitride (TaN) are established materials for diffusion barriers against copper diffusion. In this study, the characterization of TaN like films produced using N+ plasma immersion ion implantation (PIII) was performed using Auger electron spectroscopy (AES). Chemical information was extracted from the Auger data using linear least square fit (LLS). The capability of the method in order to detect very little changes in the film composition dependent on small process changes was demonstrated. The nitrogen incorporation by PIII into high aspect ratio contact holes was proven using analytical TEM. 相似文献
5.
Ke Song 《Applied Surface Science》2009,255(11):5843-5846
Super-microporous silicon material with high hydrothermal stability denoted as MCM-48-T has been prepared from mesoporous MCM-48 by high temperature treatment. The structural and chemical property of MCM-48-T has been characterized by variety of techniques such as small-angle X-ray diffraction (XRD), transmission electron microscopy (TEM), N2 adsorption-desorption, infrared spectroscopy (IR) and 29Si MAS NMR, etc. The results showed that Si-OH groups are forced to condense by the treatment of high temperature and the pore size of MCM-48-T is around 1.03 nm in the super-microporous range. Besides, the ratio of Q4/Q3 increases considerably. Compared with the original material (MCM-48), the hydrothermal stability of MCM-48-T has significantly enhanced. 相似文献
6.
We study the behavior of chiral molecules adsorbed on clean metallic surfaces using a lattice-gas model and Monte Carlo simulation. The aim is to model and simulate the structure (footprints and organization) formed by molecules on the surface as they adsorb. The model, which is applicable to chiral species like S- and R-alanine, or similar, discloses the conditions to generate different ordered phases that have been observed in experiments by other authors.In our model, each enantiomer may adsorb in two different configurations (species) and several effects are taken into account: inhibition, blockage of neighboring adsorptive sites (steric effects) and promotion of sites representing, in some sense, modifications in the surface properties due to molecule-surface interactions. These adsorption rules are inspired by the enantiomeric character of adsorbed species. We perform a systematic study of the different phases formed in order to qualitatively understand the mechanism for the formation of adsorbate structures experimentally found by other authors. 相似文献
7.
Pawe? Szabelski 《Applied Surface Science》2010,256(17):5503-539
The Monte Carlo simulation method was used to model thermal desorption of a pair of enantiomers from a solid surface with a chiral periodic pattern of active sites. The main objective of the study was to determine the optimal number of the active sites and their spatial distribution within the unit cell of the surface to achieve the most efficient separation of the enantiomers. For that purpose we tested the series of chiral patterns which were found previously for the equilibrium adsorption. Temperature programmed desorption spectra were calculated using a square lattice of adsorption sites in which the active sites were distributed spatially according to the candidate patterns. Additionally, influence of relaxation of the adsorbed layer on the relative shift of the TPD peaks of the enantiomers was assessed and the key factors affecting the chiral separation were identified. 相似文献
8.
Zhibin Huang Wancheng Zhou Xiufeng Tang Fa Luo Dongmei Zhu 《Applied Surface Science》2010,256(22):6893-6898
The 200 nm-thickness Ni film was imposed as the diffusion barrier layer between the Au film and the alloy substrate to improve the low-emissivity durability of the Au film at high temperature. The results show that the Au/Ni multilayer films still kept low emissivity after working at 600 °C for 200 h. It was concluded that the Ni interlayer effectively retarded the diffusion between gold film and the metal alloy below 600 °C. 相似文献
9.
In pursuit of low-cost and highly efficient thin film solar cells, Cu(In,Ga)(Se,S)2/CdS/i-ZnO/ZnO:Al (CIGSS) solar cells were fabricated using a two-step process. The thickness of i-ZnO layer was varied from 0 to 454 nm. The current density-voltage (J-V) characteristics of the devices were measured, and the device and performance parameters of the solar cells were obtained from the J-V curves to analyze the effect of varying i-ZnO layer thickness. The device parameters were determined using a parameter extraction method that utilized particle swarm optimization. The method is a curve-fitting routine that employed the two-diode model. The J-V curves of the solar cells were fitted with the model and the parameters were determined. Results show that as the thickness of i-ZnO was increased, the average efficiency and the fill factor (FF) of the solar cells increase. Device parameters reveal that although the series resistance increased with thicker i-ZnO layer, the solar cells absorbed more photons resulting in higher short-circuit current density (Jsc) and, consequently, higher photo-generated current density (JL). For solar cells with 303-454 nm-thick i-ZnO layer, the best devices achieved efficiency between 15.24% and 15.73% and the fill factor varied between 0.65 and 0.67. 相似文献
10.
The electrical and magnetic properties of thin iron (Fe) films have sparked significant scientific interest. Our interest, however, is in the fundamental interactions between light and matter. We have discovered a novel application for thin Fe films. These films are sources of terahertz (THz) radiation when stimulated by an incident laser pulse. After intense femtosecond pulse excitation by a Ti:sapphire laser, these films emit picosecond, broadband THz frequencies. The terahertz emission provides a direct measure of the induced ultrafast change in magnetization within the Fe film. The THz generation experiments and the growth of appropriate thin Fe films for these experiments are discussed. Several criteria are used to select the substrate and film growth conditions, including that the substrate must permit the epitaxial growth of a continuous, monocrystalline or single crystal film, yet must also be transparent to the emitted THz radiation. An Fe(0 0 1) film grown on the (0 0 1) surface of a magnesium oxide (MgO) substrate makes an ideal sample. The Fe films are grown by physical vapor deposition (PVD) in an ultrahigh vacuum (UHV) system. Low energy electron diffraction (LEED) and Auger electron spectroscopy (AES) are used to characterize the Fe(0 0 1) films. Two substrate surface preparation methods are investigated. Fe(0 0 1) films grown on MgO(0 0 1) substrates that are used as-received and films grown on MgO(0 0 1) substrates that have been UV/ozone-cleaned ex vacuo and annealed in vacuo produce the same results in the THz generation experiments. Either substrate preparation method permits the growth of samples suitable for the THz emission experiments. 相似文献
11.
Platinum films were sputter-deposited on polished nickel alloy substrates. The platinum thin films were applied to serve as low-emissivity layers to reflect thermal radiation. The platinum-coated samples were then heated in the air at 600 °C to explore the effects of annealing time on the emissivity of platinum films. The results show that the grain size of the Pt films increased with the increasing annealing time while their dc electrical resistivity decreased. Besides, the IR emissivitiy of the films gradually decreased with the increasing annealing time. Especially, when the annealing time reached 150 h, the average IR emissivity at the wavelength of 3-14 μm was only about 0.1. Moreover, the chemical analysis indicated that the Pt films on Ni-based alloy exhibit a good resistance against oxidation at 600 °C. 相似文献
12.
A high-throughput research platform was developed for the preparation and subsequent catalytic liquid-phase screening of ion-exchanged zeolites, for instance with regard to their use as heterogeneous catalysts. In this system aqueous solutions and other liquid as well as solid reagents are employed as starting materials and 24 samples are prepared on a library plate with a 4 × 6 layout. Volumetric dispensing of metal precursor solutions, weighing of zeolite and subsequent mixing/washing cycles of the starting materials and distributing reaction mixtures to the library plate are automatically performed by liquid and solid handlers controlled by a single common and easy-to-use programming software interface. The thus prepared materials are automatically contacted with reagent solutions, heated, stirred and sampled continuously using a modified liquid handling. The high-throughput platform is highly promising in enhancing synthesis of catalysts and their screening. In this paper the preparation of lanthanum-exchanged NaY zeolites (LaNaY) on the platform is reported, along with their use as catalyst for the conversion of renewables. 相似文献
13.
We study the ferromagnetic superconductor of UGe2 applying our previous model [Phys. Rev. B 61 (2000), 4289] for the high transition temperature superconductivity (HTSC). The Coulomb interaction for triplet electron pairs is reduced by a difference of the exchange interaction. In the case of UGe2 including other heavy fermion superconductors, coexistence of triplet superconductivity and ferromagnetism is possible in the case of our scheme. We also investigate the pressure-dependence of Curie temperature, Tc and superconducting temperature, Tsc. 相似文献
14.
R. Inguanta 《Applied Surface Science》2007,253(12):5447-5456
The influence of experimental parameters on the morphology of the porous structure and on the formation kinetics has been investigated for anodic alumina membranes (AAM) grown in aqueous H3PO4 at 160 V. It was found that pore aspect ratio and membrane porosity on the solution-side surface are influenced by tensiostatic charge, bath temperature and the presence of Al3+ ions in solution. Morphological and kinetic data, recorded in different conditions, give useful information on the growth mechanism of pore channels in phosphoric acid solution.Nickel nano-structures have been fabricated using AAM as template. Electroless deposition, performed by adding the reducing agent to a suitable bath in several steps, resulted in the formation of short metal nanotubes (about 5 μm long) in the upper part of the channels. Long Ni nanowires (up to 25 μm) with aspect ratio higher than 100 were obtained by pulsed unipolar electrodeposition from a Watt bath. In this case, both the influence of some experimental parameters on the nanowires growth and the fast current transients during the electrodeposition steps were analyzed. 相似文献
15.
The surface properties of biomaterials determine the interactions between biomedical devices and the surrounding biological environment. The surface modification of biomaterials is extensively recognized as a key strategy in the design of the next generation of bone implants and tissue engineering. In this study, the highly ordered octacalcium phosphate (OCP) coating and OCP/protein coating with hierarchically porous structure in nano-micro scale were constructed on titanium substrate by electrochemically-induced deposition (ED). The formation behavior of apatite on OCP and OCP/protein coatings immersed in simulated body fluid (SBF) was investigated in physicochemical aspects. It is indicated that soaked in SBF, the OCP and OCP/protein coatings are possible to induce relevant apatite formation on their surface, and the apatite-forming behavior in body environment is depended on the chemical composition and structure of the coatings. The apatite formed on OCP/protein composite coating possesses carbonated structure, needle-like crystals in nano scale, lower Ca/P ratio and higher degree of the preferred c-axis orientation, which are similar to the mineral composition and structure in natural bone, and hence called as bone-like apatite. 相似文献
16.
Films (∼0.5 mg/cm2) from TiO2 doped with 1-10 mol% Ln3+ (Ln = La or Gd) are deposited on different types of substrates by spray-pyrolysis using ethylene glycol solutions of Ti4+-Ln3+ citric complexes as starting material and O2 as a carrier gas. The films are post-deposition heated at 500 °C. Their phase composition, crystal structure, morphology, sorption ability and photocatalytic activity are studied. Aqueous solution of methylene blue is applied as a model pollutant. A film with 5 mol% La on Ti-coated stainless steel substrate shows significantly higher photocatalytic activity than the best performing samples produced from commercially available titania. 相似文献
17.
P.C Stichel 《Annals of Physics》2004,310(1):158-180
We consider the Lagrangian particle model introduced in [Ann. Phys. 260 (1997) 224] for zero mass but nonvanishing second central charge of the planar Galilei group. Extended by a magnetic vortex or a Coulomb potential the model exhibits conformal symmetry. In the former case we observe an additional SO(2,1) hidden symmetry. By either a canonical transformation with constraints or by freezing scale and special conformal transformations at t=0 we reduce the six-dimensional phase-space to the physically required four dimensions. Then we discuss bound states (bounded solutions) in quantum dynamics (classical mechanics). We show that the Schrödinger equation for the pure vortex case may be transformed into the Morse potential problem thus providing us with an explanation of the hidden SO(2,1) symmetry. 相似文献
18.
We study the dynamics of Bose-Einstein condensates flowing in optical lattices on the basis of quantum field theory. For such a system, a Bose-Einstein condensate shows an unstable behavior which is called the dynamical instability. The unstable system is characterized by the appearance of modes with complex eigenvalues. Expanding the field operator in terms of excitation modes including complex ones, we attempt to diagonalize the unperturbative Hamiltonian and to find its eigenstates. It turns out that although the unperturbed Hamiltonian is not diagonalizable in the conventional bosonic representation the appropriate choice of physical states leads to a consistent formulation. Then we analyze the dynamics of the system in the regime of the linear response theory. Its numerical results are consistent with those given by the discrete nonlinear Schrödinger equation. 相似文献
19.
We consider hydrogenase-based nanomaterials for possible use as anode electrode catalysts in polymer electrolyte fuel cells (PEFCs). We choose Fe-only hydrogenase component of Desulfovibrio desulfuricans (DdHase) as a hydrogenase complex, and investigate its catalytic activity for H2 dissociation using ab initio calculations based on density functional theory (DFT). We found two possible H-H bond cleavage pathways, which are heterolytic and possess low activation barriers. Moreover, the H2 dissociation can be promoted by inducing spin polarization of the H2 adduct. We report that hydrogenase or hydrogenase-based nanomaterials can manipulate to exhibit the catalytic activity equivalent to the well-known platinum catalyst. 相似文献