首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 450 毫秒
1.
The Cu-TiO2 nanoparticles with different Cu dopant content were prepared by sol-gel method. The structure of the as-prepared catalysts and the surface species of Cu-TiO2 were determined using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and diffuse reflection spectroscopy (DRS). The relationship between the photocatalytic activity and the surface species of Cu-TiO2 was revealed via the measurement of surface photovoltage spectroscopy (SPS) as well as the degradation of the rhodamine B (RhB). The experimental results suggest that the Cu-TiO2 photocatalysts with appropriate content of Cu (about 0.06 mol%) possess abundant electronic trap, which effectively inhibits the recombination of photoinduced charge carriers, improving the photocatalytic activity of TiO2. While at high Cu dopant region (>0.06 mol%), the excessive oxygen vacancies and Cu species can become the recombination centers of photoinduced electrons and holes. Meanwhile, at heavy Cu doping concentration, excessive P-type Cu2O can cover the surface of TiO2, which leads to decrease in the photocatalytic activity of photocatalyst. The photocatalytic experimental results are in good agreement with the conclusions of SPS measurements, indicating that there is a close relationship between the photocatalytic activity and the intensity of SPS spectra.  相似文献   

2.
To understand the role of dopant inside TiO2 matrix, anatase TiO2 was doped with transition metal ions like Mn2+, Fe3+, Ru3+ and Os3+ having unique half filled electronic configuration and their photocatalytic activity was probed in the degradation of Indigo Carmine (IC) and 4-nitrophenol (NP) under UV/solar light. For comparison, TiO2 was also doped with V5+, Ni2+ and Zn2+ metal ions having d0, d8 and d10 electronic configuration respectively. Irrespective of excitation source UV/solar light and nature of the organic pollutant, photocatalytic activities of doped photocatalysts followed the order: Mn2+-TiO2 > Fe3+-TiO2 > Ru3+-TiO2 ≥ Os3+-TiO2 > Zn2+-TiO2 > V5+-TiO2 > Ni2+-TiO2 at an optimum concentration of dopant. Based on the experimental results obtained, it is proposed that the existence of dopant with half filled electronic configuration in TiO2 matrix which is known to enhance the photocatalytic activity is not universal! Rather it is a complex function of several physicochemical-electronic properties of doped titania. Enhanced photocatalytic activity of Mn2+ (0.06 at.%)-TiO2 was attributed to the combined factors of high positive reduction potential of Mn2+/Mn3+ pairs, synergistic effects in the mixed polymorphs of anatase and rutile, smaller crystallite size with high intimate contact between two phases and favorable surface structure of the photocatalyst. Despite the intense research devoted to transition metal ion doped TiO2, it is rather difficult to make unifying conclusion which is highlighted in this study.  相似文献   

3.
Titanium dioxide photocatalysts co-doped with iron (III) and lanthanum were prepared by a facile sol-gel method. The structure of catalysts was characterized by X-ray diffraction (XRD), Raman spectroscopy, UV-vis diffuse reflectance spectroscopy and X-ray photoelectron spectroscopy (XPS). The photocatalytic activities of the samples were evaluated by the degradation of methylene blue in aqueous solutions under visible light (λ > 420 nm) and UV light irradiation. Doping with Fe3+ results in a lower anatase to rutile (A-R) phase transformation temperature for TiO2 particles, while doping with La3+ inhibits the A-R phase transformation, and co-doping samples indicate that Fe3+ partly counteracts the effect of La3+ on the A-R transformation property of TiO2. Fe-TiO2 has a long tail extending up the absorption edges to 600 nm, whereas La-TiO2 results in a red shift of the absorption. However, Fe and La have synergistic effect in the absorption of TiO2. Compared with Fe3+ and La3+ singly doped TiO2, the co-doped simple exhibits excellent visible light and UV light activity and the synergistic effect of Fe3+ and La3+ is responsible for improving the photocatalytic activity.  相似文献   

4.
In this study we present the effects of iron oxide (Fe2O3) on titanium dioxide (TiO2) in synthesising visible-light reactive photocatalysts. A Fe2O3-TiO2 composite photocatalyst was synthesized from Fe2(SO4)3 and Ti(SO4)2 by a ethanol-assisted hydrothermal method. The preparation conditions were optimized through the investigation of the effects of hydrothermal temperature and time as well as molar ratio of Ti to Fe on the photocatalytic activity. The visual, physical and chemical properties of the Fe2O3-TiO2 composites were investigated. The results showed that α-Fe2O3 and anatase TiO2 were present in the composites. The Fe2O3-TiO2 synthesized under optimum condition consisted of mesoporous structure with an average pore size of 4 nm and a surface area of 43 m2/g. Under visible and solar light irradiation, the photocatalytic activity of optimized sample was significantly higher than that of pure TiO2. This sample led to a photodegradation efficiency of 90% and 40% of auramine under visible light and solar light, respectively.  相似文献   

5.
The Sn-TiO2−X nanoparticles have been prepared via a rapid and simple stannous chemical reducing method. The as-prepared Sn-TiO2−X nanoparticles were investigated by means of surface photovoltage spectroscopy (SPS), XPS, and DRS technology as well as photocatalytic degradation of RhB were studied under illumination. The experiment results revealed that the reduction of the TiO2 particles raised their Fermi level, which can enhance the driven force of photoinduced electrons transferring from TiO2 to adsorbed O2 and SnO2 on the surface of TiO2. On the other hand, the amount of oxygen vacancies of the Sn-TiO2−X increased after the stannous chemical reduction. The oxygen vacancies can also effectively inhibit the recombination of photoinduced electrons and holes pairs. These factors are favorable to the photocatalytic reaction.  相似文献   

6.
Visible-light-driven TiO2-based catalysts for the degradation of pollutants have become the focus of attention. In the present work, iodine-doped titania photocatalysts (I-TiO2) were improved by doping with gallium (Ga,I-TiO2) and the resulting physicochemical properties and photocatalytic activity were investigated. The structural properties of the catalysts were determined by X-ray diffraction, UV-vis diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, Brunauer-Emmett-Teller analysis and transmission electron microscopy. We found that Ga probably enters the TiO2 framework for doping levels <0.5 mol%. A further increase in Ga content probably leads to dispersal of excess Ga on the TiO2 surface. The photocatalytic activity of Ga,I-TiO2 catalysts was evaluated using 2-chlorophenol (2-CP) as a model compound under visible and UV-vis light irradiation. The results indicate that 0.5 mol% Ga loading and calcination at 400 °C represent optimal conditions in the calcining temperature range 400-600 °C and with doping levels from 0.1% to 1 mol%. The effective enhancement of 2-CP degradation might be attributed to the formation of oxygen vacancies by Ga doping, which could decrease the recombination of electron-hole pairs.  相似文献   

7.
Natural zeolite supported Fe3+-TiO2 photocatalysts were synthesized for the sake of improving the recovery and photocatalytic efficiency of TiO2. The as-prepared materials were characterized by X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible diffuse reflection spectroscopy (UV-vis DRS), scanning electron microscopy (SEM) and energy-dispersive X-ray analysis (EDX). Methyl orange was used to estimate the photocatalytic activity of the samples. The results showed that zeolite inhibited the growth of TiO2 crystallite sizes. The Fe3+ concentration played an important role on the microstructure and photocatalytic activity of the samples. The iron ions could diffuse into TiO2 lattice to the form Fe-O-Ti bond and gave TiO2 the capacity to absorb light at lower energy levels. The photocatalytic activity of the samples could be enhanced as appropriate dosages of Fe3+ were doped.  相似文献   

8.
There are two major difficulties in the TiO2 liquid-solid photocatalytic system: effective immobilization of the TiO2 particles; and improving the catalytic activity under visible light. To simultaneously solve these two problems, Fe2O3-TiO2 coatings supported on activated carbon fiber (ACF), have been prepared in one step by a convenient and efficient method—metal organic chemical vapor deposition (MOCVD). XRD results revealed that Fe2O3-TiO2 coatings mainly composed of anatase TiO2, α-Fe2O3 phases and little Fe2Ti3O9. The pore structure of ACF was preserved well after loading with Fe2O3-TiO2 coatings. UV-vis diffuse reflectance spectra showed a slight shift to longer wavelengths and an enhancement of the absorption in the visible region for Fe2O3-TiO2 coatings, compared to the pure TiO2 sample. A moderate Fe2O3-TiO2 loading (13.7 wt%) was beneficial to mineralizing wastewater because the intermediates could be adsorbed onto the surface of photocatalyst following decomposition. The stable performance revealed that the Fe2O3-TiO2 coatings were strongly adhered to the ACF surface, and the as prepared catalysts could be reused showing potential application for wastewater treatment.  相似文献   

9.
Films (∼0.5 mg/cm2) from TiO2 doped with 1-10 mol% Ln3+ (Ln = La or Gd) are deposited on different types of substrates by spray-pyrolysis using ethylene glycol solutions of Ti4+-Ln3+ citric complexes as starting material and O2 as a carrier gas. The films are post-deposition heated at 500 °C. Their phase composition, crystal structure, morphology, sorption ability and photocatalytic activity are studied. Aqueous solution of methylene blue is applied as a model pollutant. A film with 5 mol% La on Ti-coated stainless steel substrate shows significantly higher photocatalytic activity than the best performing samples produced from commercially available titania.  相似文献   

10.
Praseodymium and nitrogen co-doped titania (Pr/N-TiO2) photocatalysts, which could degrade Bisphenol A (BPA) under visible light irradiation, were prepared by the modified sol-gel process. Tetrabutyl titanate, urea and praseodymium nitrate were used as the sources of titanium, nitrogen and praseodymium, respectively. The resulting materials were investigated by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), UV-vis absorbance spectroscopy, X-ray photoelectron spectroscopy (XPS), N2 adsorption-desorption isotherm and Fourier transform infrared spectra (FTIR). It was found that Pr doping inhibited the growth of crystalline size and the transformation from anatase to rutile. The degradation of BPA under visible light illumination was taken as probe reaction to evaluate the photo-activity of the co-doped photocatalyst. In our experiments, the optimal dopant amount of Pr was 1.2 mol% and the calcination temperature was 500 °C for the best photocatalytic activity. Pr/N-TiO2 samples exhibited enhanced visible-light photocatalytic activity compared to N-TiO2, undoped TiO2 and commercial P25. The nitrogen atoms were incorporated into the crystal of titania and could narrow the band gap energy. Pr doping could slow the radiative recombination of photogenerated electrons and holes in TiO2. The improvement of photocatalytic activity was ascribed to the synergistic effects of nitrogen and Pr co-doping.  相似文献   

11.
Mesoporous Fe-doped sulfated titania photocatalysts were prepared by one-step thermal hydrolysis of industrial titanyl sulfate and characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and N2 adsorption–desorption techniques. The effects of the m(Fe)/m(TiO2) on the structures of the titania photocatalysts were investigated. The photocatalytic activity of the mesoporous Fe-doped sulfated titania catalysts was evaluated using the photooxidation of methylene blue in aqueous solutions under UV light irradiation. The results indicated that Fe3+ substitutes Ti4+ in titania lattice, which induced the formation of oxygen vacancies. The oxygen vacancies are favorable to the dissociation adsorption H2O and formation of surface hydroxyl group. Fe3+ captures the photoinduced electrons or holes that are conductive to the efficient separation of the photogenerated carriers, but too many doping Fe3+ will promote recombination of the photogenerated carrier. Sulfur species in the form of sulfate are incorporated into the network of TiOTi and coordinated to titania in bidentate model, resulting in the strong inductive effect, large specific surface area, and mesoporous structure. All these are beneficial to improve the photocatalytic activities of the mesoporous Fe-doped sulfated titania photocatalysts.  相似文献   

12.
The affect of sulphur on the structural properties of iron sodium diborate glasses having the composition {(100−x)Na2B4O7+xFe2O3}+yS, where x=0.05, 0.15 and 0.25 mol% and Y=0, 2.5 and 5 wt% was studied by infrared, Mossbauer spectroscopy and magnetic susceptibility measurements. It was found that, for samples having 5 mol% Fe2O3 and free from sulphur, the iron ions are present in both Fe2+ and Fe3+ states and also 92% of the total iron enters the glass network as a glass former. The ratio of Fe3+/Fe2+ increases with increasing the iron content for sulphur-free samples and others containing sulphur. This ratio also decreases with increasing the sulphur content. The magnetic susceptibility was found to decrease with increasing the sulphur content. Also, the increase of Fe2O3 content led to a less symmetrical environment of Fe3+ ions and vice versa for the Fe2+ environment.  相似文献   

13.
Titanium dioxide (TiO2) nanoparticles co-doped with N and Fe were prepared via modified sol-gel process. The products were characterized by transmission electron microscopy (TEM), N2 adsorption, X-ray diffraction (XRD), Raman spectroscopy, UV-vis spectroscopy, photoluminescence (PL), and X-ray photoelectron spectroscopy (XPS). It is shown that the prepared TiO2 particles were less than 10 nm with narrow particle size distribution. The addition of MCM-41 caused the formation of Ti-O-Si bond which fixed the TiO2 on MCM-41 surface, thus restricted the agglomeration and growth of TiO2 particles. The photocatalytic performance in the degradation of methylene blue showed that N, Fe co-doped TiO2 exhibited much higher photocatalytic activity than doped sample with nitrogen or Fe3+ alone under both UV and visible light. N, Fe co-doping decreased the loss of doping N during the degradation reaction, thus increased the photocatalytic stability. It was also found that the nitridation time had significant influence on the photocatalytic activity of prepared TiO2 catalysts.  相似文献   

14.
Novel Pd/InVO4-TiO2 thin films with visible light photocatalytic activity were synthesized from the Pd and InVO2 co-doped TiO2 sol via sol-gel method. The photocatalytic activities of Pd/InVO4-TiO2 thin films were investigated based on the oxidative decomposition of methyl orange in aqueous solution. The as-prepared samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and UV-vis absorption spectroscopy (UV-vis). The results indicate that the Pd/InVO4-TiO2 thin films are compact, uniform and consist of sphere nanoparticles with diameters about 80-100 nm. The UV-vis spectra show that the Pd/InVO4-TiO2 thin films extend the light absorption spectrum toward the visible region. XPS results reveal that doped Pd exist in the form of metallic palladium. The photocatalytic experiments demonstrate that Pd doping can effectively enhance the photocatalytic activities of InVO4-TiO2 thin films in decomposition of aqueous methyl orange under visible light irradiation. It has been confirmed that Pd/InVO4-TiO2 thin films could be excited by visible light (E < 3.2 eV) due to the existence of the Pd and InVO4 doped in the films.  相似文献   

15.
Iodine-doped TiO2 nanocrystallites (denoted as I-TNCs) were prepared via a newly developed triblock copolymer-mediated sol-gel method at a temperature of 393 K. I-doping, crystallization and the formation of porous structure have been simultaneously achieved. The obtained particles were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and UV-vis spectrophotometer. The results indicated that the as-prepared I-TNCs possessed a diameter of ca. 5 nm with anatase crystalline structure and a specific surface area of over 200 m2 g−1. The presence of iodine expanded the photoresponse in visible light range, and led to enrich in surface hydroxyl group on the TiO2 surface. Compared with the commercial photocatalyst P25, the I-TNCs significantly enhanced the photocatalytic efficiency in the degradation of rhodamine B and 2,4-dichlorophenol, and the I-TNCs with 2.5 mol% doping ratio exhibited the best photocatalytic activity.  相似文献   

16.
Polycrystalline thin films of Fe3−xZnxO4 (x = 0.0, 0.01 and 0.02) were prepared by pulsed-laser deposition technique on Si (1 1 1) substrate. X-ray diffraction studies of parent as well as Zn doped magnetite show the spinel cubic structure of film with (1 1 1) orientation. The order–disorder transition temperature for Fe3O4 thin film with thickness of 150 nm are at 123 K (Si). Zn doping leads to enhancement of resistivity by Zn2+ substitution originates from a decrease of the carrier concentration, which do not show the Verwey transition. The Raman spectra for parent Fe3O4 on Si (1 1 1) substrate shows all Raman active modes for thin films at energies of T2g1, T2g3, T2g2, and A1g at 193, 304, 531 and 668 cm−1. It is noticed that the frequency positions of the strongest A1g mode are at 668.3 cm−1, for all parent Fe3O4 thin film shifted at lower wave number as 663.7 for Fe2.98Zn0.02O4 thin film on Si (1 1 1) substrate. The integral intensity at 668 cm−1 increased significantly with decreasing doping concentration and highest for the parent sample, which is due to residual stress stored in the surface.  相似文献   

17.
This paper deals with the preparation of pure and ferric chloride (FeCl3) doped polyvinyl alcohol (PVA) films by solution casting method. Optical and electrical properties were systematically investigated. We have found the decrease in optical band gap energy of PVA films on doping FeCl3. The optical band gap energy values in the present work are found to be 3.10 eV for pure PVA, 2 eV for PVA:Fe3+ (5 mol%), 1.91 eV for PVA:Fe3+(15 mol%) and 1.8 eV for PVA:Fe3+(25 mol%). Direct current electrical conductivity (σ) of pure, FeCl3 doped PVA films in the temperature range 70-127 °C has been studied. At 387 K dc electrical conductivity of pure PVA film is 5.5795 μ Ω−1 cm−1, PVA:Fe3+ (5 mol%) film is 10.0936 μ Ω−1 cm−1 and γ-Irradiated PVA:Fe3+ (5 mol%) film for 900 CGY/min is 22.1950 μ Ω−1 cm−1. The result reveals the enhancement of the electrical conductivity with γ-irradiation. FT-IR study signifies the intermolecular hydrogen bonding between Fe3+ ions of FeCl3 with OH group of PVA.  相似文献   

18.
In this paper, TiO2:Sm3+ (0.75 mol%) nanoparticles doped with different amounts of Br were prepared by an improved sol-gel method and were characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), VG ESCALAB MKIIX-ray photoelectron spectrometer (XPS) and ultraviolet-visible diffuse reflectance spectroscopy (UV-vis DRS). Their photoluminescence (PL) properties were investigated at room temperature. The emissions of 4G5/2-6HJ (J=5/2, 7/2, 9/2) transitions of Sm3+ ions were observed under the excitation wavelength at 350 nm and the emission intensity depended strongly on the doping amount of Br. TiO2:Sm3+ (0.75 mol%) nanoparticles doped with 1 mol% of Br calcined at 700 °C exhibit highest intensity of luminescence, which is nearly three times than the undoped one. The mechanism of photoluminescence in the co-doped system was discussed.  相似文献   

19.
Fe3+-doped TiO2 film deposited on fly ash cenosphere (Fe-TiO2/FAC) was successfully synthesized by the sol-gel method. These fresh photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and thermogravimetric analyses (TGA). The XRD results showed that Fe element can maintain metastable anatase phase of TiO2, and effect of temperature showed rutile phase appears in 650 °C for 0.01% Fe-TiO2/FAC. The SEM analysis revealed the Fe-TiO2 films on the surface of a fly ash cenosphere with a thickness of 2 μm. The absorption threshold of Fe-TiO2/FACs shifted to a longer wavelength compared to the photocatalyst without Fe3+-doping in the UV-vis absorption spectra. The photocatalytic activity and kinetics of Fe-TiO2/FAC with varying the iron content and the calcination temperatures were investigated by measuring the photodegradation of methyl blue (MB) during visible light irradiation. Compared with TiO2/FAC and Fe3+-doped TiO2 powder (Fe-TiO2), the degradation ratio using Fe-TiO2/FAC increased by 33% and 30%, respectively, and the best calcined temperature was 450 °C and the optimum doping of Fe/Ti molar ratio was 0.01%. The Fe-TiO2/FAC particles can float in water due to the low density of FAC in favor of phase separation to recover these photocatalyst after the reaction, and the recovery test shows that calcination contributes to regaining photocatalytic activity of Fe-TiO2/FAC photocatalyst.  相似文献   

20.
Two kinds of vanadium-doped TiO2 powders photocatalysts were prepared by sol-gel method in even doping and uneven doping modes, and were characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), transmission electron microscopy (TEM) and UV-vis diffuse reflectance spectroscopy (DRS). The photocatalytic activity of TiO2 photocatalysts doped by vanadium evenly with lower dopant level up to 0.002 mol.% is better than that of undoped TiO2, while with higher dopant level the activity is worse. TiO2 photocatalysts doped by vanadium unevenly with a p-n junction semiconductor structure, was shown to have a much higher photocatalytic destruction rate than that of TiO2 photocatalysts doped by vanadium evenly and undoped TiO2, which is ascribed mainly to the electrostatic-field-driven electron-hole separation in TiO2 particles doped by vanadium unevenly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号