首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Flame spread on a fuel droplet array has been studied as a simple model of spray combustion. A three-fuel-droplet array with a pendulum suspender was employed to investigate interactions between flame spread and droplet motion in the axial direction. Initial droplet diameter was 0.8 mm, and fuel was n-heptane. A silicon carbide pendulum suspender of 15 μm in diameter and 30 mm in length was used for the third droplet. The first fixed droplet was ignited by electric spark. Behavior of the flame and the third droplet was observed using a high-speed video camera with an image intensifier. Particle tracking velocimetry (PTV) measurements were performed to explain the behavior of the third movable droplet. The dimensionless droplet span, which is the average of droplet-to-droplet distances divided by the average initial diameter of the three droplets, was varied from 2.5 to 8 for observing flame spread, and fixed at 5.5 for PTV measurements. It was observed that the third droplet moved away from the second droplet before the flame spread to the third droplet. The displacement of the third droplet is remarkable when the dimensionless droplet span is close to the limit of flame spread. This implies that the movement of the droplet decreases the dimensionless span of the flame spread limit and the flame spread speed near the flame spread limit. Results of PTV measurements suggest that the heat expansion wave, caused by ignition of the premixture which was accumulated around the second droplet, and the burned gas flow from the second droplet pushed away the third droplet; then natural convection, induced by the flames of the first and second droplets, drew the third droplet to the second droplet. The heat expansion wave and the burned gas flow of the second droplet reached nearly 12 in dimensionless span.  相似文献   

2.
Jet formation in the laser forward transfer of liquids   总被引:1,自引:0,他引:1  
The dynamics of the laser-induced forward transfer (LIFT) of an aqueous solution is investigated through time-resolved imaging. The experiment is carried out at conditions under which droplets are deposited on a receptor substrate. The obtained images reveal that after an initial balloon-like stage, a uniform jet with a very long length and high aspect ratio is formed, which advances at constant speed until it finally becomes unstable and breaks into several droplets. This dynamics demonstrates that the deposition process of well-defined droplets through LIFT results from the contact of the liquid jet with the receptor substrate, and not from a flying droplet.  相似文献   

3.
Laser-induced forward transfer (LIFT) of the enzyme luciferase was explored as a potential technique to be used in the fabrication of a microchip adenosine triphosphate (ATP) sensor. Poly(dimethylsiloxane) (PDMS) was selected as the substrate for deposition of the luciferase. In comparison with other solid substrates, such as glass and polystyrene, it was found that the flexibility of PDMS made it a superior substrate for the immobilization of micro-spots of luciferase. LIFT of luciferase onto a PDMS substrate using a 355 nm laser was successfully carried out, while the bioactivity of the enzyme was maintained. Yellow luminescence ascribed to luciferase was observed from a transferred spot on the PDMS chip from the enzymatic reaction between luciferin and ATP. A microchip ATP sensor was also fabricated by attaching a small photodiode to the PDMS chip. On the basis of the fabricated microchip, the Michaelis-Menten relation between the luminescence intensity from the spot, and the ATP concentration was confirmed. The potential for fabricating biosensors using a combination of the LIFT technique with a PDMS substrate was shown to be very good.  相似文献   

4.
The possibility of printing two-dimensional micropatterns of biomolecule solutions is of great interest in many fields of research in biomedicine, from cell-growth and development studies to the investigation of the mechanisms of communication between cells. Although laser-induced forward transfer (LIFT) has been extensively used to print micrometric droplets of biological solutions, the fabrication of complex patterns depends on the feasibility of the technique to print micron-sized lines of aqueous solutions. In this study we investigate such a possibility through the analysis of the influence of droplet spacing of a water and glycerol solution on the morphology of the features printed by LIFT. We prove that it is indeed possible to print long and uniform continuous lines by controlling the overlap between adjacent droplets. We show how, depending on droplet spacing, several printed morphologies are generated, and we offer, in addition, a simple explanation of the observed behavior based on the jetting dynamics characteristic of the LIFT of liquids.  相似文献   

5.
An energy model to explain particle removal mechanism has been developed. This model is based on a detailed investigation of contact deformation of a particle on a solid surface, as well as particle motion during the process of substrate surface expansion under uniform laser irradiation. Calculation results show that small particles mainly gain kinetic energy during pulsed laser irradiation, whereas large particles mainly gain elastic deforming potential energy. The particle removal condition is derived from the viewpoint of energy. The relationship of particle removal efficiency with laser fluence and particle size is discussed. Theoretical results are compared with experimental results. Received: 30 July 1998 / Accepted: 14 December 1998 / Published online: 17 March 1999  相似文献   

6.
A mesoscale fluid film placed on a solid support may break up and form droplets. In addition, droplets may exhibit spontaneous translation by modifying the wetting properties of the substrate, resulting in asymmetry in the contact angles. We examine mechanisms for droplet formation and motion on uniform and terraced landscapes, i.e., composite substrates. The fluid film stability, droplet formation and velocity are studied theoretically in the isothermal case using a lubrication approach in one spatial dimension. The droplet properties are found to involve contributions from both the terraced layer thickness and molecular interactions via the disjoining potential.  相似文献   

7.
Laser-induced forward transfer (LIFT) is a high resolution microprinting technique in which small amounts of material are transferred from a previously prepared donor thin film to a receptor substrate. The application of LIFT to liquid donor films allows depositing complex and fragile materials in solution or suspension without compromising the integrity of the deposited material. However, the main drawback of LIFT is the preparation of the donor material in thin film form, being difficult to obtain reproducible thin films with thickness uniformity and good stability.In this work we present a laser microprinting technique that is able to overcome the drawbacks associated with the preparation of the liquid film, allowing the deposition of well-defined uniform microdroplets with high reproducibility and resolution. The droplet transfer mechanism relies on the highly localized absorption of strongly focused femtosecond laser pulses underneath the free surface of the liquid contained in a reservoir.An analysis of the influence of laser pulse energy on the morphology of the printed droplets is carried out, revealing a clear correlation between the printed droplet dimensions and the laser pulse energy. Such correlation is interpreted in terms of the dynamics of the liquid displaced by a laser-generated cavitation bubble close to the free surface of the liquid. Finally, the feasibility of the technique for the production of miniaturized biosensors is tested.  相似文献   

8.
The self-motion of an oil droplet in an aqueous phase on a glass surface is reported. The aqueous phase contains a cationic surfactant, which tends to be adsorbed onto the glass surface. The oil droplet contains potassium iodide and iodine, which prefers to make an ion pair with the cationic surfactant. Since the ion pair is soluble in the oil droplet, dissolution of the surfactant into the oil droplet is promoted, i.e., the system is far from equilibrium with regard to surfactant concentration. The oil droplet is self-driven in a reactive manner by the spatial gradient of the glass surface tension. We discuss the intrinsic nature of this self-motion by developing a simple mathematical model that incorporates adsorption and desorption of the surfactant on the glass surface. Using this mathematical model we were able to construct an equation of motion that reproduces the observed self-motion of an oil droplet. This equation describes active Brownian motion. Theoretical considerations were used to predict the generation of the regular mode of oil-droplet motion, which was subsequently confirmed by experiments.  相似文献   

9.
This paper considers the interaction between two droplets placed on a substrate in immediate vicinity. We show here that when the two droplets are of different fluids and especially when one of the droplet is highly volatile, a wealth of fascinating phenomena can be observed. In particular, the interaction may result in the actuation of the droplet system, i.e. its displacement over a finite length. In order to control this displacement, we consider droplets confined on a hydrophilic stripe created by plasma-treating a PDMS substrate. This controlled actuation opens up unexplored opportunities in the field of microfluidics. In order to explain the observed actuation phenomenon, we propose a simple phenomenological model based on Newton’s second law and a simple balance between the driving force arising from surface energy gradients and the viscous resistive force. This simple model is able to reproduce qualitatively and quantitatively the observed droplet dynamics.  相似文献   

10.
The dynamic droplet model of critical fluids is applied to understanding critical fluid sound absorption. The resonance frequency of an oscillating droplet is used to explain the scaling on frequency and temperature observed in sound absorption data.  相似文献   

11.
The resonant modes of sessile water drops on a hydrophobic substrate subjected to a small-amplitude lateral vibration are investigated using computational fluid dynamic (CFD) modeling. As the substrate is vibrated laterally, its momentum diffuses within the Stokes layer of the drop. Above the Stokes layer, the competition between the inertial and Laplace forces causes the formation of capillary waves on the surface of the drop. In the first part of this paper, the resonant states of water drops are illustrated by investigating the velocity profile and the hydrostatic force using a 3d simulation of the Navier-Stokes equation. The simulation also allows an estimation of the contact angle variation on both sides of the drop. In the second part of the paper, we investigate the effect of vibration on a water drop in contact with a vertical plate. Here, as the plate vibrates parallel to gravity, the contact line oscillates. Each oscillation is, however, rectified by hysteresis, thus inducing a ratcheting motion to the water droplet vertically downward. Maximum rectification occurs at the resonant states of the drop. A comparison between the frequency-dependent motion of these drops and the variation of contact angles on their both sides is made. The paper ends with a discussion on the movements of the drops on a horizontal hydrophobic surface subjected to an asymmetric vibration.  相似文献   

12.
溶解与热对流对固体颗粒运动影响的直接数值模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
刘汉涛  仝志辉  安康  马理强 《物理学报》2009,58(9):6369-6375
对牛顿流体内溶解与热对流对单颗粒在垂直管道中的沉降运动进行了直接数值模拟.流体运动由守恒方程计算,密度和黏性的变化考虑流场温度变化的影响,通过积分黏性应力和压力获得颗粒的受力跟踪颗粒运动,溶解引起的相变及其形状的变化由溶解潜热、溶解质量与分散相边界处的温度梯度的关系建立的方程决定.通过颗粒和流体间相互的作用力和力矩及边界条件的施加实现相间耦合.分别模拟了颗粒在等温流体、热流体、冷流体及颗粒溶解四种情况下的沉降过程.结果表明,在一定雷诺数内,热对流产生的颗粒尾迹处涡的脱落以及溶解引起的颗粒表面形态的变化引起了颗粒的横向摆动,并使颗粒沉降速度发生了变化. 关键词: 溶解 热对流 颗粒两相流 直接数值模拟  相似文献   

13.
Laser-induced forward transfer (LIFT) is a direct-writing technique which allows the deposition of tiny amounts of material from a donor thin film onto a receptor substrate. When LIFT is applied to liquid donor films, the laser radiation affects only a localized fraction of the liquid, thereby impelling the unaffected portion towards the receptor substrate. Thus, transfer takes place with no melting or vaporization of the deposited fraction and, in this way, LIFT can be used to successfully print complex materials like inorganic inks and pastes, biomolecules in solution, and even living cells and microorganisms. In addition, and for a wide range of liquid rheologies, the material can be deposited in the form of circular microdroplets; this provides LIFT with a high degree of spatial resolution leading to feature sizes below 10 μm, and making it competitive in front of conventional printing techniques. In this work, a revision of the main achievements of the LIFT of liquids is carried out, correlating the morphological characteristics of the generated features with the results of the study of the transfer process. Special emphasis is put on the characterization of the dynamics of liquid ejection, which has provided valuable information for the understanding of microdroplets deposition. Thus, new time-resolved imaging analyses have shown a material release behavior which contrasts with most of the previously made assumptions, and that allows clarifying some of the questions open during the study of the LIFT technique.  相似文献   

14.
Manipulating the directional movement of liquid droplets is of significance for design and fabrication of some microfluidic devices, An energy-based method is adopted to analyse the directional movement of a droplet deposited in a conical tube or on a conical fibre. We perform an experiment to investigate the directional motion of a droplet in an open conical tube. Our theoretical analysis and experimental observations both demonstrate that surface tension can drive the droplet to move in the conical tube. The critical condition of the liquid moving in the conical tube is presented. We also analyse a droplet on a conical hydrophilic fibre, which can move from the thinner to the thicker end.  相似文献   

15.
Based on the refraction images of a droplet evaporating on a rough substrate, we simultaneously observed the dynamics of its surface microrelief, contact angle, and contact line deformations along the entire perimeter of the contact line. This has led us conclude that the microrelief structure is directly related to the phenomenon of contact angle hysteresis and the jump-like pattern of contact line deformation. We suggest a possible mechanism for the occurrence of contact angle hysteresis during droplet evaporation and derive the relations that specify the range of possible contact angles at known microrelief parameters.  相似文献   

16.
Acoustic droplet vaporization (ADV) of perfluorocarbon emulsions has been explored for diagnostic and therapeutic applications. Previous studies have demonstrated that vaporization of a liquid droplet results in a gas microbubble with a diameter 5–6 times larger than the initial droplet diameter. The expansion factor can increase to a factor of 10 in gassy fluids as a result of air diffusing from the surrounding fluid into the microbubble. This study investigates the potential of this process to serve as an ultrasound-mediated gas scavenging technology. Perfluoropentane droplets diluted in phosphate-buffered saline (PBS) were insonified by a 2 MHz transducer at peak rarefactional pressures lower than and greater than the ADV pressure amplitude threshold in an in vitro flow phantom. The change in dissolved oxygen (DO) of the PBS before and after ADV was measured. A numerical model of gas scavenging, based on conservation of mass and equal partial pressures of gases at equilibrium, was developed. At insonation pressures exceeding the ADV threshold, the DO of air-saturated PBS decreased with increasing insonation pressures, dropping as low as 25% of air saturation within 20 s. The decrease in DO of the PBS during ADV was dependent on the volumetric size distribution of the droplets and the fraction of droplets transitioned during ultrasound exposure. Numerically predicted changes in DO from the model agreed with the experimentally measured DO, indicating that concentration gradients can explain this phenomenon. Using computationally modified droplet size distributions that would be suitable for in vivo applications, the DO of the PBS was found to decrease with increasing concentrations. This study demonstrates that ADV can significantly decrease the DO in an aqueous fluid, which may have direct therapeutic applications and should be considered for ADV-based diagnostic or therapeutic applications.  相似文献   

17.
Coarse-grained molecular dynamics simulations are applied to investigate the origins of the surface features observed in films deposited by the Matrix-Assisted Pulsed Laser Evaporation (MAPLE) technique. The formation of transient balloon-like structures with a polymer-rich surface layer enclosing matrix vapor, observed in earlier simulations of slow heating of polymer-matrix droplets, has been explored in this work at higher rates of thermal energy deposition. Tensile stresses generated in the regime of partial stress confinement are found to induce an internal boiling in the overheated droplets and associated generation of “molecular balloons” at thermal energy densities at which no homogeneous boiling takes place without the assistance of tensile stresses. Simulations of the dynamic processes occurring upon the collision of a polymer-matrix droplet with a substrate provide the molecular-level pictures of the droplet impact phenomenon and reveal the connections between the droplet landing velocity and the shapes of the polymer features observed in scanning electron microscopy images of films deposited in MAPLE experiments. The distinct types of surface features observed in MAPLE experiments, namely, wrinkled “deflated balloons,” localized arrangements of interconnected polymer filaments, and elongated “nanofibers,” are shown to emerge from different scenarios of droplet landing and/or disintegration observed in the simulations.  相似文献   

18.
刘霖  叶玉堂  吴云峰  方亮  陆佳佳 《物理学报》2007,56(6):3172-3177
利用红外热像实时监测系统,研究了GaAs表面不同运动状态(包括静止状态、缓慢运动状态、快速运动状态)下H2SO4-H2O2-H2O液滴的红外辐射特性,并对实验结果和研究价值进行分析.主要的实验结论包括:静止状态时,反应生成热在液滴内部向上对流,液滴顶部为红外辐射灰度峰值,并向液滴边缘陡降,同时,生成热将沿GaAs基片向周边扩散;缓慢运动时,液滴后存在类似于“彗尾”的热残留现象,表现为温度降低、灰度峰值与液滴运动同向的“双重运动特性”,灰度峰值位移曲线与液滴实际位移存在差异,温度最高点有可能位于“慧尾”中;快速运动时,液滴未与GaAs反应便脱离基片,表现为“液膜轨迹”现象,辐射灰度从液膜边缘到液膜中心为半椭圆面的平缓过渡,并分析了轨迹中心灰度值的分布与变化特性.液滴运动热行为红外监测方法的提出,在推动液滴自身研究的同时,也将进一步推动红外技术与材料科学、化学科学等交叉学科的融合. 关键词: 红外热像 实时监测 液滴 砷化镓  相似文献   

19.
We study chemically driven running droplets on a partially wetting solid substrate by means of coupled evolution equations for the thickness profile of the droplets and the density profile of an adsorbate layer. Two models are introduced corresponding to two qualitatively different types of experiments described in the literature. In both cases an adsorption or desorption reaction underneath the droplets induces a wettability gradient on the substrate and provides the driving force for droplet motion. The difference lies in the behavior of the substrate behind the droplet. In case I the substrate is irreversibly changed whereas in case II it recovers allowing for a periodic droplet movement (as long as the overall system stays far away from equilibrium). Both models allow for a non-saturated and a saturated regime of droplet movement depending on the ratio of the viscous and reactive time scales. In contrast to model I, model II allows for sitting drops at high reaction rate and zero diffusion along the substrate. The transition from running to sitting drops in model II occurs via a super- or subcritical drift-pitchfork bifurcation and may be strongly hysteretic implying a coexistence region of running and sitting drops.  相似文献   

20.
采用基于Shan-Chen伪势模型的格子Boltzmann方法,对液滴在存在润湿梯度的倾斜表面上克服重力、自下而上运动的过程进行模拟。探究润湿梯度、液滴尺寸、Bond数以及表面倾斜角度对液滴运动的影响。计算结果表明:液滴在运动过程中,内部会出现沿斜面向上的速度矢量,润湿梯度越大,液滴运动速度越快,润湿长度也越长,且动态接触角减小速率越快。液滴尺寸和Bond数对液滴运动的影响较小,但存在临界Bond数,超过该临界Bond数时,液滴将沿梯度润湿表面向下运动。表面倾角对液滴运动有显著影响,倾角增大,液滴运动速度和润湿长度都明显减小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号