首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Femtosecond surface structure modifications are investigated under irradiation with laser pulses of 150 fs at 800 nm, on copper and silicon. We report sub-wavelength periodic structures formation (ripples) with a periodicity of 500 nm for both materials. These ripples are perpendicular to the laser polarization and can be obtained with only one pulse. The formation of these ripples corresponds to a fluence threshold of 1 J/cm2 for copper and 0.15 J/cm2 for silicon. We find several morphologies when more pulses are applied: larger ripples parallel to the polarization are formed with a periodicity of 1 μm and degenerate into a worm-like morphology with a higher number of pulses. In addition, walls of deep holes also show sub-wavelength and large ripples.  相似文献   

2.
Surface acoustic wave (SAW) waveguide resonator is formed by a ring-shaped strip of copper 10 μm wide and ∼130 μm in diameter embedded into a 0.8 μm thick layer of silica on a silicon wafer. SAWs are excited at one side of the copper ring by a short laser pulse focused into a spatially periodic pattern and detected via diffraction of the probe laser beam overlapped with the excitation spot. SAW wavepackets with central frequency 460 MHz travel around the ring and are detected each time they make a full circle and pass trough the probe spot. Potential applications of ring resonators for SAWs are discussed.  相似文献   

3.
Si nano-composites were precipitated on LiF crystals following ablation from Si targets with laser light at 157 nm. The LiF/Si interface was analyzed with scanning electron microscopy, atomic force microscopy and energy dispersive X-ray microanalysis. It was found that Si composites were strongly attached to LiF ionic sites to form inhomogeneous structures consisted of small isotropic crystals 0.1-1 μm long, rich in Si and fluorine, which eventually further agglomerate to form larger structures. The thickness of the LiF/Si interface was increased from 50 nm to 2 μm following laser irradiation at 157 nm, due to accelerated adsorption of Si in the LiF interface by VUV light.  相似文献   

4.
X. Wang 《Applied Surface Science》2010,257(5):1583-1588
The surface damage morphologies of single crystal silicon induced by 1064 nm millisecond Nd:YAG laser are investigated. After irradiation, the damage morphologies of silicon are inspected by optical microscope (OM) and atomic force microscope (AFM). The plasma emission spectra of the damaged region are detected by the spectrometer. It is shown that surface oxidation and nitridation have occurred during the interaction of millisecond laser with silicon. In addition, the damage morphologies induced by 2 ms and 10 ns pulse width laser are compared. The damage morphology obtained by 2 ms laser is an evident crater. Three types of damage morphologies are formed at different laser energy densities. The circular concentric ripples are found surrounding the rim of the crater. The spacing of the ripples is 15 ± 5 μm. Two types of cracks are observed: linear crack and circular crack. The linear crack is observed in the center of the damaged region which propagates to the periphery of the damaged region. The circular crack is located at the rim of the crater. The damage morphology induced by 10 ns laser is surface layer damage. The periodic linear waves are generated due to the interference between the incident beam and the scattered beam. The spacing of the ripples is 1.54 μm which is close to the incident laser wavelength 1.064 μm. The linear crack is located at the center of the damaged region. Furthermore, for the same laser energy density, the dimension of the damaged region and the crater depth induced by 2 ms laser are greater than that of 10 ns laser. It indicates that the damage mechanism under millisecond pulse laser irradiation is strongly different from the case of nanosecond pulse laser.  相似文献   

5.
In this work we present periodic surface structures generated by linearly polarized F2 laser light (157 nm) on polyethyleneterephthalate (PET). Atomic force microscopy was used to study the topological changes induced by the laser irradiation. The laser irradiation induces the formation of periodic ripple structures with a width of ca 130 nm and a height of about 15 nm in the fluence range 3.80-4.70 mJ/cm2 and the roughness of the polymer surface increases due to the presence of these periodic structures. Subsequently, the laser modified PET foils were coated with a 50 nm thick gold layer by sputtering. After Au deposition on the PET foils with ripple structure, the roughness of surface decreases in comparison to PET with ripples without Au coating. For 50 nm thick Au layers, the ripple structure is not directly transferred to the gold coating, but it has an obvious effect on the grain size of the coating. With considerably thinner Au layers, the ripple structures are smoothened but preserved.  相似文献   

6.
We defined conditions of the laser-aided formation of nanoporous structures with nanopores ranging in size from 40 to 50 nm using laser pulses of 10.6 μm wavelength at a pulse-repetition rate of up to (4-5)×103 Hz for a model metallic material (a two-component alloy “brass of 62%”). It has been established that the exposure to a uniform laser light at depths of up to 25-30 μm results in the formation of nanopores with a relatively uniform distribution across the surface. The resulting pattern contains both solitary pores and ramified porous channels. The nanopores are uniformly distributed within a subgrain, being fairly stable in size and shape. The nanopore size and shape feature larger non-uniformity on the subgrain boundary. The resulting metallic structures show promise for use as catalysts and ultrafiltration membranes.  相似文献   

7.
Gabriel Kerner 《Surface science》2006,600(10):2091-2095
A weakly bound buffer material is structured on a surface by interfering low power laser beams, as a template for patterning metallic thin films deposited on top. The excess buffer material and metal layer are subsequently removed by a second uniform laser pulse. This laser pre-structured buffer layer assisted patterning procedure is demonstrated for gold layer forming a grating on a single crystal Ru(1 0 0) under UHV conditions, using Xe as the buffer material. Millimeters long, submicron (0.65 μm) wide wires can be obtained using laser wavelength of 1.064 μm with sharp edges of less than 30 nm, as determined by AFM. This method provides an all-in-vacuum metallic film patterning procedure at the submicron range, with the potential to be developed down to the nanometer scale upon decreasing the patterning laser wavelength down to the UV range.  相似文献   

8.
Through-wafer vertical electrical interconnects (vias) with diameters varied from 15 to 80 μm were formed on Si substrates using a UV diode-pumped solid state laser (355 nm). Micro-Raman spectroscopy was employed for the investigation of stress and structural changes induced in silicon within the heat-affected zone due to laser machining. A maximum stress of ∼300 MPa, as a result of laser drilling, was observed close to the via edge. It was found that the stress decays within a distance of 1-3 μm from the via’s side-wall and that the laser machining did not lead to the formation of amorphous silicon around the via structures.  相似文献   

9.
The laser ablation technique has been employed to prepare titanium (Ti) and tungsten (W) colloids from the elemental solids in ethanol using a copper-hydrogen bromide (CuHBr) vapour laser. The obtained nanoparticles were spherical with most diameters ranging from 0.05 to 0.5 μm. Some particles, notably when using Ti targets, are bigger than 0.9 μm, indicating resolidification of liquid droplets. The mechanism of material removal was characterized by photo-ablation where some particles were generated by rapid solidification from the melt. The W particles had tendency to coalescence, since small clusters merge to larger spheres. On the other hand, the Ti particles were coalescence-free, perhaps due to the thin high-resistant oxide layer at their surface.  相似文献   

10.
Pulsed UV laser drilling can be applied to fabricate vertical electrical interconnects (vias) for AlGaN/GaN high electron mobility transistor devices on single-crystalline silicon carbide (SiC) substrate. Through-wafer micro holes with a diameter of 50-100 μm were formed in 400 μm thick bulk 4H-SiC by a frequency-tripled solid-state laser (355 nm) with a pulse width of ≤30 ns and a focal spot size of ∼15 μm. The impact of laser machining on the material system in the vicinity of micro holes was investigated by means of micro-Raman spectroscopy and transmission electron microscopy. After removing the loosely deposited debris by etching in buffered hydrofluoric acid, a layer of <4 μm resolidified material remains at the side walls of the holes. The thickness of the resolidified layer depends on the vertical distance to the hole entry as observed by scanning electron microscopy. Micro-Raman spectra indicate a change of internal strain due to laser drilling and evidence the formation of nanocrystalline silicon (Si). Microstructure analysis of the vias’ side walls using cross sectional TEM reveals altered degree of crystallinity in SiC. Layers of heavily disturbed SiC, and nanocrystalline Si are formed by laser irradiation. The layers are separated by 50-100 nm thick interface regions. No evidence of extended defects, micro cracking or crystal damage was found beneath the resolidified layer. The precision of UV laser micro ablation of SiC using nanosecond pulses is not limited by laser-induced extended crystal defects.  相似文献   

11.
We report on study of morphology, optical contrast and transport characteristics of La0.7Ba0.3MnO3 (LBMO) manganite thin films bilayered with SnO2 on Si (0 0 1) substrate, synthesized using pulsed laser deposition system. X-ray diffraction study reveals that both LBMO and SnO2 show polycrystalline growth over the substrate. Atomic force microscopy shows interesting pyramidal structures of LBMO of size ∼2 μm × 1 μm × 0.1 μm. On the other hand, SnO2 grows in the form of close packed cylindrical clusters of ∼200 nm radius. Near-field optical microscopy (NSOM) study using 532 nm laser reveal that optical NSOM output intensity in LBMO is four times less than SnO2 signal. Transport characterizations show that this bilayer configuration exhibit non-linear current-voltage characteristics from 300 upto 50 K. The nature becomes linear below this temperature. The results project the system as a promising candidate in non-conventional device category in the area of spintronics.  相似文献   

12.
Circular via holes with diameters of 10, 25, 50 and 70 μm and rectangular via holes with dimensions of 10 μm × 100 μm, 20 μm × 100 μm and 30 μm × 100 μm and drilled depths between 105 and 110 μm were formed in 300 μm thick bulk 4H-SiC substrates by Ar/F2 based UV laser drilling (λ = 193 nm) with a pulse width of ∼30 ns and a pulse frequency of 100 Hz. The drilling rate was linearly proportional to the fluence of the laser, however, the rate decreased for the larger via holes. The laser drilling produces much higher etch rates (229-870 μm/min) than conventional dry etching (0.2-1.3 μm/min) and the via entry can be tapered to facilitate subsequent metallization.  相似文献   

13.
Porous carbon dendrite has been prepared by irradiating graphite targets with 532 nm, 10 ns laser pulses. The prepared samples were characterized by means of scanning electron microscopy, transmission electron microscopy and Raman spectroscopy. The measurement results show that carbon dendrite structures with cluster diameter of 10 nm were obtained on the irradiated target surface in an inert gas atmosphere. The evolution of target surface morphology induced by different laser intensities was investigated. The formation mechanism of the dendrite structure has been discussed in detail. The laser intensity plays an important role in the formation of the nanostructures and there exists an optimum intensity to prepare the carbon dendrite.  相似文献   

14.
The surface modification of Cd1−xMnxTe (x = 0-0.3) crystal wafers under pulsed laser irradiation has been studied. The samples were irradiated by a Q-switched ruby laser with pulse duration of 80 ns. Optical diagnostics of laser-induced thermal processes were carried out by means of time-resolved reflectivity measurements at wavelengths 0.53 and 1.06 μm. Laser irradiation energy density, E varied in the range of 0.1-0.6 J/cm2. Morphology of irradiated surface was studied using scanning electron microscopy. The energy density whereby the sample surface starts to melt, depends on Mn content and is equal to 0.12-0.14 J/cm2 for x ≤ 0.2, in the case of x = 0.3 this value is about 0.35 J/cm2. The higher Mn content leads to higher melt duration. The morphology of laser irradiated surface changes from a weakly modified surface to a single crystal strained one, with an increase in E. Under irradiation with E in the range of 0.21-0.25 J/cm2, the oriented filamentary crystallization is observed. The Te inclusions on the surface are revealed after the irradiation of samples with small content of Mn.  相似文献   

15.
Laser shock forming is conceived as a non-thermal laser forming method of thin metal sheets using the shock wave induced by laser irradiation to modify the target curvature. The plastic deformation induced by the shock wave and the direct plasma pressure applied on the material generate a residual stress distribution in the material finally leading to its bending. Using water as a confinement medium for the plasma the pressure can be increased around 10 times and the final deformation has a dramatic increase.The effect can be made clearly apparent in thin specimens (up to 1 mm). In the present study thin (100 μm) stainless steel (AISI 316) strips (1 mm long and 300 μm wide) in single and double pinned configurations have been investigated.A Nd:YAG Laser (1064 nm) with 10 ns of pulse length (FWHM) and an energy of 21 mJ per pulse is focused in the strip (spot diameter of the spot = 500 μm).Experimental and numerical studies of the influence of plasma confinement in the process and number of applied pulses are presented.The study shows that the final bending of the specimens can be controlled on a relative wide range by a stable quasi-proportional relation to the number of applied pulses and, what is considered as of major importance, that plasma confinement increases the generated pressure and thus the bending in the target.Laser shock microforming in confined configuration is considered as a technique allowing the successful processing of components in a medium range of miniaturization.  相似文献   

16.
We demonstrate that a femtosecond laser can be used to machine arbitrary patterns and pattern arrays into free-standing electrospun polycaprolactone (PCL) membranes. We also examine the influence of various laser irradiation settings on the final microstructure of electrospun membranes. A beam fluence of 0.6 J/cm2 is used to ablate holes in 100 μm thick PCL membranes. The machined holes have an average diameter of 436 μm and a center-to-center spacing of 1000 μm. Based on these results, the femtosecond ablation of electrospun membranes shows great potential for fabricating a variety of functional tissue scaffolds. This technique will advance scaffold design by providing the ability to rapidly tailor surface morphology, while minimizing and controlling the deformation of the electrospun fibers.  相似文献   

17.
Periodic three-dimensional structures were successfully grown on single crystal Si wafers either bare or Au-covered under their exposure to a pulsed radiation of a Nd:YAG laser in vacuum. The structures protrude above the initial wafer surface for 10 μm while their spatial period is about 70 μm. The coupling of the laser radiation to Si surface is related to the thermal non-linear absorption of the near band gap radiation. The structures exhibit an efficient field emission with an average emission current of 5 mA/cm2 and is sensitive to the post-treatment of samples. The drawbacks of the emission current densities are discussed.  相似文献   

18.
A direct patterning method of dielectric BaTiO3 (BT) films is proposed, which applies laser-induced pyrolysis in combination with nano-crystalline seeding technique. A precursor solution of a BT complex alkoxide containing BT nano-crystalline particles with polyvinylpyrollidone (PVP) as dispersion stabilizer was spin-coated on Pt substrate. An Ar+ laser beam was focused and scanned on spin-coated BT films, which induced pyrolysis and crystallization of the films with spatial selectivity. Micropatterns were obtained by striping laser-unirradiated regions on the films with HCl aqueous solution. Raman spectra of the micropattern confirmed that the structures were tetragonal crystalline BT. Clear micropatterns with a line width of ca. 3 μm and an interval of 5 μm were formed at PVP concentrations of 25 and 50 kg/m3. The dielectric constant and dissipation factor of the film fabricated at a laser energy density of 27 MW/cm2 and a scanning speed of 25 μm/s attained 76.2 and 0.07, respectively, for a measurement frequency of 100 kHz.  相似文献   

19.
L.Z. Xia  H. Su  R. Zhou 《Optics Communications》2009,282(13):2564-2566
An all-solid-state mid-infrared optical parametric generator with wide tunability by using multi-grating periodically poled 5 mol.-% MgO-doped lithium niobate (MgO:PPLN) is reported. The pump source is a diode-pumped Q-switched Nd:GdVO4 laser operated at 1.342 μm with pulse width of 150 ns and repetition rate of 50 kHz. To extend the interaction length, two identical multi-grating MgO:PPLN crystals have been cascaded in the OPG system. When the incident pump average power is 10 W, the obtained maximum idler output power is 340 mW at 4.144 μm. Compared with only using one multi-grating MgO:PPLN crystal, the obtained idler output power increases by 20.1%. 4.144-4.851 μm continuous-tunable idler output is obtained with six grating periods from 29 to 31.5 μm and temperature from 40 to 200 °C. To our knowledge, this is the first time to use 1.342 μm laser as the pump source of OPG.  相似文献   

20.
The microstructural morphological changes in laser irradiated targets are investigated. Nd:YAG laser (1064 nm, ∼12 ns nominal, 1.1 MW) is used to irradiate 4 N pure (99.99%) fine polished and annealed silver samples in ambient air and under vacuum ∼10−6 Torr. The laser spot size and power density at tight focus are 12 μm and 3×1011 W/cm2, respectively. SEM micrographs and X-ray diffractograms of the exposed and unexposed targets reveal the surface texture and structural changes, respectively. Amongst the ablation mechanisms involved, exfoliation and hydrodynamic sputtering are found to be dominant. Surface modifications appear in the form of craters and ripples formation. Heat is conducted non-uniformly through narrow channels at the surface. Thermal stresses induced by the laser do not disturb inter planar distance of the target. On the other hand irradiation causes significant variations in grain size and diffracted X-rays intensities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号