首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J. Li 《Applied Surface Science》2009,255(20):8682-8684
Dielectric barrier discharges (DBD) in ambient air are used on carbon fiber to improve the fiber surface activity. Carbon fibers with length of 75 μm are placed into the plasma configuration. The interaction between modified carbon fibers and polypropylene (PP) was studied by three-point bending (TPB) test. The chemical changes induced by the treatments on carbon fiber surface are examined using X-ray photoelectron spectroscopy (XPS). XPS results reveal that the carbon fiber modified with the DBD at atmospheric pressure show a significant increase in oxygen and nitrogen concentration. These results demonstrate that the surface of the carbon fiber is more active and hydrophilic after plasma treatments using a DBD operating in ambient air.  相似文献   

2.
Wettability of Armos fibers has been investigated after exposed to dielectric barrier discharge (DBD) plasma, which was performed at atmospheric pressure in air while varying the sample treatment time between 9 and 27 s. Contact angles and surface free energy of the original and plasma-treated fibers were measured with dynamic contact angle analysis (DCAA) to reveal the correlation between the fiber wettability and the surface treatment, including surface composition and topography modifications, which were evaluated by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM), respectively. It was found by XPS analysis that the O/C atomic ratio on Armos fiber surface can be increased from 0.134 to 0.248 after the 18 s exposure to the plasma and many polar functional groups were proved to be incorporated into the surface, which aided good wetting. In addition, AFM observations revealed the changes of fiber surface microstructure, showing significant enhancement of the surface roughness after the treatment, which could also bring the fiber better wettability. What's more, the impacts of fiber surface treatment on its tensile properties were characterized by single fiber tensile strength (SFTS) testing. Results showed that Armos fibers exhibited only slight reductions in their tensile strengths with the great enhancement in fiber surface free energy.  相似文献   

3.
The hydrophobicity and tensile strength of muga silk fiber are investigated using radiofrequency (RF) Ar plasma treatment at various RF powers (10-30 W) and treatment times (5-20 min). The Ar plasma is characterized using self-compensated Langmuir and emissive probe. The ion energy is observed to play an important role in determining the tensile strength and hydrophobicity of the plasma treated fibers. The chemical compositions of the fibers are observed to be affected by the increase in RF power rather than treatment time. XPS study reveals that the ions that are impinging on the substrates are mainly responsible for the cleavage of peptide bond and side chain of amino acid groups at the surface of the fibers. The observed properties (tensile strength and hydrophobicity) of the treated fibers are found to be dependent on their variation in atomic concentration and functional composition at the surfaces. All the treated muga fibers exhibit almost similar thermal behavior as compared to the virgin one. At RF power of 10 W and treatment time range of 5-20 min, the treated fibers exhibit properties similar to that of the virgin one. Higher RF power (30 W) and the increase in treatment time deteriorate the properties of the fibers due to incorporation of more surface roughness caused by sufficiently high energetic ion bombardment. The properties of the plasma treated fibers are attempted to correlate with the XPS analysis and their surface morphologies.  相似文献   

4.
Aramid fiber samples are treated by air dielectric barrier discharge (DBD) plasma at atmospheric pressure; the plasma treatment time is investigated as the major parameter. The effects of this treatment on the fiber surface physical and chemical properties are studied by using surface characterization techniques. Scanning electron microscopy (SEM) is performed to determine the surface morphology changes, X-ray photoelectron spectroscopy (XPS) is analyzed to reveal the surface chemical composition variations and dynamic contact angle analysis (DCAA) is used to examine the changes of the fiber surface wettability. In addition, the wetting behavior of a kind of thermoplastic resin, poly(phthalazinone ether sulfone ketone) (PPESK), on aramid fiber surface is also observed by SEM photos. The study shows that there seems to be an optimum treatment condition for surface modification of aramid fiber by the air DBD plasma. In this paper, after the 12 s, 27.6 W/cm3 plasma treatment the aramid fiber surface roughness is significantly improved, some new oxygen-containing groups such as C-O, CO and OC-O are generated on the fiber surface and the fiber surface wettability is greatly enhanced, which results in the better wetting behavior of PPESK resin on the plasma-treated aramid fiber.  相似文献   

5.
The effect of oxygen plasma treatment on the non-equilibrium dynamic adsorption of the carbon fabric reinforcements in RTM process was studied. 5-Dimethylamino-1-naphthalene-sulfonylchloride (DNS-Cl) was attached to the curing agent to study the change of curing agent content in the epoxy resin matrix. Steady state fluorescence spectroscopy (FS) analysis was used to study this changes in the epoxy resin at the inlet and outlet of the RTM mould, and XPS was used to study the chemical changes on the carbon fiber surfaces introduced by plasma treatment. The interlaminar shear strength (ILSS) and flexural strength were also measured to study the effects of this non-equilibrium dynamic adsorption progress on the mechanical properties of the end products. FS analysis shows that the curing agent adsorbed onto the fiber surface preferentially for untreated carbon fiber, the curing agent content in the resin matrix maintain unchanged after plasma treatment for 3 min and 5 min, but after oxygen plasma treatment for 7 min, the epoxy resin adsorbed onto the fiber surface preferentially. XPS analysis indicated that the oxygen plasma treatment successfully increased some polar functional groups concentration on the carbon fiber surfaces, this changes on the carbon fiber surfaces can change the adsorption ability of carbon fiber to the resin and curing agent. The mechanical properties of the composites were correlated to this results.  相似文献   

6.
DBD-induced surface modification is very versatile to increase the adhesion or hydrophilicity of polymer films. In this paper, the DBD is produced by repetitive unipolar nanosecond pulses with a rise time of 15 ns and a full width at half maximum of about 30 ns. The power densities of the homogeneous and filamentary DBDs during plasma treatment are 158 and 192 mW/m2, respectively, which are significantly less than that using ac DBD processing, and the corresponding plasma dose is also mild compared to AC DBD treatment. Surface treatment of polyimide films using the homogeneous and filamentary DBDs is studied and compared. The change of chemical and physical modification of the surface before and after plasma processing has been evaluated. It can be found that both surface morphology and chemical composition are modified, and the modification includes the rise of hydrophilicity, surface oxidation and the enhancement of surface roughness. Furthermore, the homogeneous DBD is more effective for surface processing than the filamentary DBD, which can be attributed to the fact that the homogeneous DBD can modify the surface more uniformly and introduce more polar functional groups.  相似文献   

7.
Wet oxidation behaviors of Hi-Nicalon fibers were investigated in environment of PH2O:O2:Ar=14:8:78kPa with a slow gas flow rate of 3.5 cm s−1 above 1300 °C for 1 h. Experimental results indicated that oxidized Hi-Nicalon fibers were covered by silica. The weight gains and surface micromorphologies were strongly affected by temperature. Below 1500 °C, the surface of the oxidized fibers were rough-hewn and cracked, and there were no changes detected in fiber diameter. After oxidation at 1600 °C, the silica locally spalled and the fiber swelled in diameter. The Young-Laplace equation was applied to interpret surface micromorphologies change during wet oxidation of the specimens. The cracks in silica produced by oxidation and the microcrystal growth of the fibers at high temperature were considered for the strength degradation of the fibers.  相似文献   

8.
Hu Miao  Guo Yun 《Applied Surface Science》2011,257(16):7065-7070
The sterilization of E. coli (ATCC8099) using an atmospheric pressure, air DBD plasma driven by 100 Hz high-voltage power supply was investigated in this paper. The results showed that germicidal efficiency was closely related to the plasma treatment time, the gap spacing, the initial cell density and the surface characters of substrate materials. The germicidal efficiency was 99.999% under the conditions of 5-min plasma treatment, 3-cm gap spacing and on PET films. After plasma exposure for 5 min, the temperature was observed below 43 °C which could not lead to inactivate E. coli. The observation of protein leakage and cell morphology alteration by transmission electron microscopy (TEM) techniques revealed that the etching action on cell membrane by electrons, ions and radicals was primary reason of DBD air plasma sterilization.  相似文献   

9.
Effects of γ-ray radiation grafting on aramid fibers and its composites   总被引:2,自引:0,他引:2  
Armos fiber was modified by Co60 γ-ray radiation in the different concentrations’ mixtures of phenol-formaldehyde and ethanol. Interlaminar shear strength (ILSS) was examined to characterize the effects of the treatment upon the interfacial bonding properties of Armos fibers/epoxy resin composites. The results showed that the ILSS of the composite, whose fibers were treated by 500 kGy radiation in 1.5 wt% PF, was improved by 25.4%. Nanoindentation technique analysis showed that the nanohardnesses of the various phases (the fiber, the interface and the matrix) in the composite, whose fibers were treated, were correspondingly higher than those in the composite, whose fibers were untreated. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FT-IR) spectrum confirmed the increase in the polar groups at the fibers’ surface. Atomic force microscopy (AFM) results revealed that the surface of the fibers treated was rougher than that of the fibers untreated. The wettability of the fibers’ surface was also enhanced by the treatment. The conclusion that γ-ray irradiation grafting significantly improved the surface properties of Armos fibers could be drawn.  相似文献   

10.
This paper is concerned with the influence of argon plasma on the interfacial adhesion of PBO fiber/bismaleimide composites and aging behaviors. The interlaminar shear strength (ILSS) was greatly increased to 62.3 MPa with an increase of 39.7% after treatment for 7 min at 80 Pa, 200 W. A small amount of O and N atoms was incorporated onto the fiber surface, but the plasma caused C-O bonds to break and generated OC-N groups. The fiber surface roughness increased, contributing much to the wettability. However, long-time treatment excessively destroyed the inherent and newly created structures. The SEM images suggested that the fracture shifted from the interface to the matrix. The modification effects degraded with storage time in the air and the ILSS decreased to approximately 54.0 MPa after 10-30 days. The composite had low water absorption of 2.0 wt% and a high retention of 90% in the ILSS at moisture conditions.  相似文献   

11.
In this study, we used calyculin A to induce premature condensed chromosomes (PCC). S-phase PCC is as “pulverized” appearance when viewed by light microscopy. Then, we applied atomic force microscopy (AFM) to investigate the ultrastructual organization of S-phase PCC. S-phase PCC shows ridges and grooves as observed by AFM. After trypsin treatment, chromosome surface roughness is increased and chromosome thickness is decreased. At high magnification, the ridges are composed of densely packed 30 nm chromatin fibers which form chromosome axis. Around the ridges, many 30 nm chromatin fibers radiate from center. Some of the 30 nm chromatin fibers are free ends. The grooves are not real “gap”, but several 30 nm chromatin fibers which connect two ridges and form “grid” structure. There are four chromatin fibers detached from chromosome: two free straight 30 nm chromatin fibers, one loop chromatin fiber and one straight combining with loop chromatin fiber. These results suggested that the S-phase PCC was high-order organization of 30 nm chromatin fibers and the 30 nm chromatin fibers could exist as loops and free ends.  相似文献   

12.
The influence of He/O2 atmospheric pressure plasma jet (APPJ) treatment on subsequent wet desizing of polyacrylate on PET fabrics was studied in the present paper. Weight loss results indicated that the weight loss increased with an increase of plasma treatment time. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) showed an increased surface roughness after the plasma treatment. SEM also showed that the fiber surfaces were as clean as unsized fibers after 35 s treatment followed by NaHCO3 desizing. X-ray photoelectron spectroscopy (XPS) analysis indicated that oxygen-based functional groups increased for the plasma treated polyacrylate sized fabrics. The percent desizing ratio (PDR) results showed that more than 99% PDR was achieved after 65 s plasma treatment followed by a 5 min NaHCO3 desizing. Compared to conventional wet desizing, indicating that plasma treatment could significantly reduce desizing time.  相似文献   

13.
Field emitters of vertical carbon fibers on a silicon substrate are fabricated by catalytic chemical vapor deposition. After an ageing process of 150 min, field emission measurement of the fibers is carried out in a vacuum chamber with a base pressure of 5.0 × 10−4 Pa. The experimental results display that field emission performance of the carbon fibers depends strongly on the vacuum level during the experiments. After the field emission measurement, damage to the carbon fiber field emitters is observed from the scanning electron microscopic images.  相似文献   

14.
Vertically aligned carbon nanotube (CNT) arrays have been grown onto the carbon fiber fabric using a catalytic chemical vapor deposition (CCVD) method. The as-synthesized CNT arrays are about 20 μm in height, and the nanotube has a mean inner and outer diameter of 2.6 nm, 5.5 nm, respectively. The CNT-grafted carbon fabric shows a hydrophobic property with a contact angle over 145°, and the single CNT-grafted carbon fiber shows a sharp increase of dynamic contact angle in de-ionized water from original 71.70° to about 103°, but a little increase does in diiodomethane or E-51 epoxy resin. However, the total surface energy of carbon nanotube-grafted carbon fiber is almost as same as that of as-received carbon fiber. After CNTs growth, single fiber tensile tests indicated a slight tensile strength degradation within 10% for all different lengths of fibers, while the fiber modulus has not been significantly damaged. Compared with the as-received carbon fibers, a nearly 110% increase of interfacial shear strength (IFSS) from 65 to 135 MPa has been identified by single fiber pull-out tests for the micro-droplet composite, which is reinforced by as-received carbon fiber or CNT-grafted carbon fiber.  相似文献   

15.
The effect of oxygen-plasma treatment for Kevlar fibers on the interfacial adhesion and typical macro-properties of Kevlar fiber/bismaleimide composites was intensively studied. It is found that oxygen-plasma treatment significantly affects the interfacial adhesion by changing the chemistry and morphology of the surfaces of the fibers, and thus leading to improved interlaminar shear strength, water resistance and dielectric properties of the composites. However, the improvement is closely related to the treatment power and time. The best condition for treating Kevlar fiber is 70 W for 5 min. Oxygen-plasma treatment provides an effective technique for overcoming the poor interfacial adhesion of Kevlar fiber based composites, and thus showing great potential in fabricating high performance copper clad laminates.  相似文献   

16.
This work focuses on the effects of different ultrasound power densities on the microstructural changes and physicochemical properties of okara fibers, which are composed of carbohydrate-based polymers. Okara suspensions were treated with ultrasound at different power densities (0, 1, 2, 3, 4, and 5 W/mL) for 30 min, after which the ultrasound-treated okara were hydrolyzed by trypsin to obtain okara fibers. The ultrasound treatment of the okara fibers induced structural disorganization and changes, evidenced mainly in their morphological characteristics and their relative crystallinity degrees. Increasing the ultrasound power broke the okara fibers into flaky and stacked structures. When the ultrasound power density reached 4 W/mL, the parenchyma became compact and the hourglass structure fractured. The mean particle size of the okara fiber was reduced from 82.24 µm to 53.96 µm, and the homogeneity was enhanced significantly. The relative crystallinity of the okara fibers was reduced from 55.14% to 36.47%. The okara fiber surface charge decreased when the ultrasound power was increased. However, after ultrasound treatment at 4 W/mL (800 W), the okara fiber suspension exhibited the highest viscosity value and a higher swelling capacity, water-holding capacity, and oil-holding capacity. Therefore, the results indicated that the selection of processing conditions for okara fibers is critical and that okara fiber modification using a high ultrasound treatment might improve their use in potential applications.  相似文献   

17.
Optical multimode fibers are applied in materials processing (e.g. automotive industry), defense, aviation technology, medicine and biotechnology. One challenging task concerning the production of multimode fibers is the enhancement of laser-induced damage thresholds. A higher damage threshold enables a higher transmitted average power at a given fiber diameter or the same power inside a thinner fiber to obtain smaller focus spots.In principle, different material parameters affect the damage threshold. Besides the quality of the preform bulk material itself, the drawing process during the production of the fiber and the preparation of the fiber end surfaces influence the resistance. Therefore, the change of the laser-induced damage threshold of preform materials was investigated in dependence on a varying thermal treatment and preparation procedure.Single and multi-pulse laser-induced damage thresholds of preforms (F300, Heraeus) were measured using a Q-switched Nd:YAG laser at 1064 nm wavelength emitting pulses with a duration of 15 ns, a pulse energy of 12 mJ and a repetition rate of 10 Hz. The temporal and spatial shape of the laser pulses were controlled accurately.Laser-induced damage thresholds in a range from 150 J cm−2 to 350 J cm−2 were determined depending on the number of pulses applied to the same spot, the thermal history and the polishing quality of the samples, respectively.  相似文献   

18.
Coupling properties of two gain-guided, index-antiguided (GG + IAG) fibers, or GG + IAG fibers and index-guided (IG) fibers, were investigated by the further general coupled-mode theory. The theory can explain any situation of two fiber coupling. The interesting results were obtained by the numerical computation method. For two GG + IAG fiber coupling, total power was decreased as rising real-valued refractive-index difference (real part of refractive-index difference between core and cladding, RVRID), while the power of one GG + IAG fiber was damped oscillations with increased core separation. In the GG + IAG fiber and IG fiber coupler, the variation of the RVRID could change coupling characteristics. These results are different from two IG fibers coupling, and the general coupled-mode theory may provide meaningful references for new concepts of directional coupler and pumping technology of GG + IAG fiber.  相似文献   

19.
Multi-walled carbon nanotubes (MWCNTs) and graphene nanoplatelets (GNPs) have been functionalized by dielectric barrier discharge (DBD) in air. The extent of functionalization of MWCNTs and GNPs reaches a maximum at the delivered discharge energy of 720 and 240 J mg−1, respectively. Further exposure to plasma leads to reduction of functional groups from the surface of the treated nanomaterials. It has also been demonstrated that DBD plasma does not produce dramatic structural changes in MWCNTs, while flakes of the treated GNPs become thinner and smaller in the lateral size. Conductive thin films, obtained by drop casting a solution of the treated nanomaterials in N-methyl-1-pyrrolidone on poly(methyl methacrylate) substrate, show significantly lower sheet resistance.  相似文献   

20.
Manjit Singh  R.S. Kaler 《Optik》2008,119(8):359-364
We have investigated the return-to-zero (RZ) pulse duty cycle for single-channel Standard Single mode fiber (SSMF), Non Zero Dispersion shifted fibers (normal NZDSF and anomalous NZDSF fiber) for 10 Gbps optical fiber communication system. We give a comprehensive look on the behavior of variable duty cycle optical RZ pulse indicating that lowest bit error rate for duty cycle 0.8 among the duty cycle values 0.2, 0.4, 0.6 and 0.8 investigated for the case of SSMF. The single repeaterless mode fiber length is increased from existing 55 km at duty cycle 0.2 to fiber length 85 km by keeping duty cycle at 0.8. The result is also emphasized through the 10 dB Q value improvement and corresponding improvement in average eye opening diagram. The normal NZDSF show similar improvement but at greater fiber length, it offers BER 10−9 at length 110 km with duty cycle 0.2. NZDSF operating length can further be increased to length 160 km by keeping duty cycle 0.8. The corresponding 8 dB Q value improvement and Average eye opening improvement also supports the result through its graphical variation. Thirdly Anomalous NZDSF for same optical communication system showed that 0.2 duty cycle value give operational length of 130 km which could be extended to 160 km if 0.8 duty cycle is kept. The corresponding 8 dB Q value improvement, average eye-opening improvement endorsed the fact in the graphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号