首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To protect carbon/carbon (C/C) composites from oxidation, a new type of oxidation protective coating has been produced by a two-step pack cementation technique. XRD and SEM analysis show, the coating obtained by the first step pack cementation was a porous β-SiC structure, and a new phase of CrSi2 was generated in the porous SiC coating after heat-treatment according to the second step pack cementation process. Oxidation test shows that, the weight loss of the SiC coated C/C is up to 11.26% after 5 h oxidation in air at 1773 K, and the weight loss of the CrSi2-SiC coated C/C composites is only 4.15% after oxidation in air at 1773 K for 34 h. The oxidation of C/C composites was primarily due to the reaction of C/C matrix and oxygen diffusing through the penetrable cracks in the coating.  相似文献   

2.
The SiC/SiO2 deposition was performed to improve the oxidation resistive properties of carbon nanofiber (CNF) from electrospinning at elevated temperatures through sol-gel process. The stabilized polyacrylonitrile (PAN) fibers were coated with SiO2 followed by heat treatment up to 1000 and 1400 °C in an inert argon atmosphere. The chemical compositions of the CNFs surface heat-treated were characterized as C, Si and O existing as SiC and SiO2 compounds on the surface. The uniform and continuous coating improved the oxidation resistance of the carbon nanofibers. The residual weight of the composite was 70-80% and mixture of SiC, SiO2 and some residual carbon after exposure to air at 1000 °C.  相似文献   

3.
Oxidation protective SiC-Al2O3-mullite multi-coatings for carbon/carbon (C/C) composites were prepared with a two-step pack cementation process. The influence of preparation temperature and SiO2/Al2O3 ratio of the pack powder on the phase, microstructure and oxidation resistance of the multi-coatings were investigated. It showed that the multi-coatings that contained mullite could be produced at 1700-1800 °C. A denser coating surface was acquired with the decrease of SiO2/Al2O3 ratio in the pack chemistries while a little damnification to the interface of the coating and C/C substrate. The as-prepared coating could effectively protect C/C composites from oxidation at 1600 °C for 81 h.  相似文献   

4.
J. Yi  X.D. He  Y. Li 《Applied Surface Science》2007,253(17):7100-7103
SiC/SiO2 nanocomposite coating was deposited by electron beam-physical vapor deposition (EB-PVD) through depositing SiC target on pre-oxidized 316 stainless steel (SS) substrate. High melting point component C remained and covered on the surface of ingot after evaporation. When SiC ingot was reused, remaining C had an effect on the composition, hardness and emissivity of SiC/SiO2 nanocomposite coating. The composition of ingot and coating was studied by X-ray photoelectron spectroscopy (XPS). The influence of remaining C on hardness and spectral normal emissivity of SiC/SiO2 nanocomposite coating was investigated by nanoindentation and Fourier transform infrared spectrum (FTIR), respectively. The results show that remaining C has a large effect on hardness and a minor effect on spectral normal emissivity of SiC/SiO2 nanocomposite coating.  相似文献   

5.
A novel ZrC-SiC coating was prepared on carbon/carbon (C/C) composites surface by solid phase infiltration and the ablation properties of the ZrC-SiC coated C/C composites under oxyacetylene flame were studied. The results show that the coating prepared on the condition of optimum process parameters exhibits dense surface and outstanding anti-ablation ability. After ablation for 20 s, the mass ablation rates of the coated C/C composites can be lowered to 2.36 × 10−3 g/s, 37.1% reduction compared with uncoated C/C composites. The oxide layer composed of ZrO2 and SiO2 acts as oxygen diffusion barrier and the evaporation of ZrO2 and SiO2 absorbs a great amount of heat from the flame and reduces the erosive attack on the coating.  相似文献   

6.
Cycle oxidation resistance at 800 °C in static air was investigated for a nanostructured Ni60-TiB2 composite coating sprayed by high velocity oxy-fuel (HVOF). For comparison, a Ni60-TiB2 conventional composite coating was also studied. The results indicate that, the oxidation processes of both composite coatings are controlled by diffusion mechanism, and the nanostructured composite coating has better cycle oxidation resistance than that of the conventional composite coating. The reasons for this improvement can be attributed to the formation of the intact SiO2 and Cr2O3 protective layer, and the enhanced adhesion between oxide film and nanostructure coating.  相似文献   

7.
Conventional thermal oxidation of SiC requires heating at ∼1100 °C. In the present study, we have developed a method of oxidizing SiC at low temperatures (i.e., ∼120 °C) to form relatively thick silicon dioxide (SiO2) layers by use of nitric acid. When 4H-SiC(0 0 0 1) wafers are immersed in 40 wt% HNO3 at the boiling temperature of 108 °C and the boiling is kept for 5 h after reaching the azeotropic point (i.e., 68 wt% HNO3 at 121 °C), 8.1 nm thick SiO2 layers are formed on the SiC substrates. High resolution transmission electron microscopy measurements show that the SiO2/SiC interface is atomically flat and the SiO2 layer is uniform without bunching. When SiC is immersed in an azeotropic mixture of HNO3 with water from the first, the SiO2 thickness is less than 0.3 nm. The metal-oxide-semiconductor (MOS) diodes with the SiO2 layer formed by the nitric acid oxidation method possess a considerably low leakage current density.  相似文献   

8.
To increase the SiC content in Cr-based coatings, Cr-Al2O3/SiC composite coatings were plated in Cr(VI) baths which contained Al2O3-coated SiC powders. The Al2O3-coated SiC composite particles were synthesized by calcining the precursor prepared by heterogeneous deposition method. The transmission electron microscopy analysis of the particles showed that the nano-SiC particle was packaged by alumina. The zeta potential of the particles collected from the bath was up to +23 mV, a favorable condition for the co-deposition of the particles and chromium. Pulse current was used during the electrodeposition. Scanning Electron Microscopy (SEM) indicated that the coating was compact and combined well with the substrate. Energy dispersive X-ray analysis of Cr-Al2O3/SiC coatings demonstrated that the concentration of SiC in the coating reached about 2.5 wt.%. The corrosion behavior of the composite coating was studied by potentiodynamic polarization and electrochemical impedance spectroscopy techniques. The data obtained suggested that the Al2O3/SiC particles significantly enhanced the corrosion resistance of the composite coating in 0.05 M HCl solution.  相似文献   

9.
In this work, we report on two properties of the oxidation of tantalum silicide (Ta2Si) on SiC substrates making this material of interest as insulator for many wide bandgap or compound semiconductors. The relatively high oxidation rate of tantalum silicide to form high-k insulator layers and its ability for being oxidized in diluted N2O ambient in a manner similar to the oxidation in O2 are investigated. Metal-insulator-semiconductor capacitors have been used to establish the actual applicability and constrain of the high-k insulator depending on the oxidation conditions. At 1050 °C, the reduction of the oxidation time from 1 h to 5 min affects primordially the SiOx interfacial layer formed between the bulk insulator and the substrate. This interfacial layer strongly influences the metal-insulator-semiconductor performances of the oxidized Ta2Si layer. The bulk insulator basically remains unaffected although some structural differences arise when the oxidation is performed in N2O.  相似文献   

10.
Plasma electrolytic oxidation (PEO) of a ZC71/SiC/12p-T6 magnesium metal matrix composite (MMC) is investigated in relation to coating growth and corrosion behaviour. PEO treatment was undertaken at 350 mA cm−2 (rms) and 50 Hz with a square waveform in stirred 0.05 M Na2SiO3.5H2O/0.1 M KOH electrolyte. The findings revealed thick, dense oxide coatings, with an average hardness of 3.4 GPa, formed at an average rate of ∼1 μm min−1 for treatment times up to 100 min and ∼0.2 μm min−1 for later times. The coatings are composed mainly of MgO and Mg2SiO4, with an increased silicon content in the outer regions, constituting <10% of the coating thickness. SiC particles are incorporated into the coating, with formation of a silicon-rich layer at the particle/coating interface due to exposure to high temperatures during coating formation. The distribution of the particles in the coating indicated growth of new oxide at the metal/coating interface. The corrosion rate of the MMC in 3.5% NaCl is reduced by approximately two orders of magnitude by the PEO treatment.  相似文献   

11.
TaC coatings with hybrid, (2 0 0) and (2 2 0) texture structure were prepared on carbon/carbon (C/C) composites by isothermal chemical vapor deposition with TaCl5-Ar-C3H6 system. The residual stress, hardness and ablation behaviors of the different coatings were characterized by Raman spectra, nano-indentation and oxyacetylene flame ablation machine respectively. Results shown tensile stress exists in the TaC coatings and increases when texture orientation turns from hybrid to (2 2 0) and (2 0 0), while nano-indentation hardness of the coatings also obeys the same trend. The deposited coatings could improve the ablation-resistance properties of C/C composites effectively. The texture structure also had great effects on the ablation properties and ablation morphologies of the coatings. The mass ablation rate obviously decreases when the texture structure changes from hybrid orientation to (2 0 0) and (2 2 0) orientations. The hybrid orientation and (2 0 0) texture coatings exhibit coarse oxide morphologies with crater or some breakage existed; while the (2 2 0) texture coating shows dense, molten oxide morphology. The main ablation behaviors of the hybrid, (2 0 0) and (2 2 0) texture TaC coatings are oxidation and particle denudation and block denudation, oxidation and block denudation, oxidation and mechanical erosion and block denudation, respectively.  相似文献   

12.
In this paper, carbon fibers with improved thermal stability and oxidation resistive properties were prepared and evaluated their physical performances under oxidation condition. Carbon fibers were coated with SiC particles dispersed in a polyacrylonitrile solution and then followed by pyrolyzed at 1400 °C to obtain the SiC nanoparticle deposition on the surface of the carbon fiber. The SiC coated carbon fiber showed extended oxidation resistive property as remaining 80-88% of the original weight even at high temperature 1000 °C under air, as compared with the control of zero weight at 600 °C. The effects of the coating conditions on the oxidation resistive properties of the coated fibers were studied in detail.  相似文献   

13.
A SiO2 protective coating was deposited on an IN738LC alloy using CCVD. The physical properties of a SiO2 protective layer are influenced by the amount of tetraethyl orthosilicate (TEOS, C8H20O4Si). Therefore, the SiO2 protective coating was deposited using different TEOS concentrations and deposition times to optimize the conditions. The deposited coating layer was confirmed to be a SiO2 layer by SEM, EDX, and ESCA analyses. The oxidation resistance of the alloy was evaluated by thermo gravimetric analysis. The oxidation resistance of the SiO2 protective coating was highest when the coating was processed at a TEOS concentration of 0.05 mol/l, which is the highest concentration of source material used. The surface roughness of the SiO2 protective layer also increased with increasing TEOS concentration. The surface roughness of the coating had little effect on the oxidation resistance for a film thickness of approximately 1 μm.  相似文献   

14.
Double layer coatings, with celsian-Y2SiO5 as inner layer and Y2Si2O7 as outer layer, were prepared by microwave sintering on the surface of carbon fiber reinforced silicon carbide matrix composite. Both celsian, Y2SiO5 and Y2Si2O7 were synthesized by in situ method using BAS glass, Y2O3 and SiO2 as staring materials. The sintering temperature was 1500 °C, and little damage was induced to the composite. The composition and micrograph of the fired coating were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The oxidation and thermal shock resistance of samples with doubled-layered coating were characterized at 1400 °C in air. After 150 min oxidation and thermal cycling between 1400 °C and room temperature for 15 times, the weight loss of double layer-coated sample was 1.22% and there were no cracks in the coating.  相似文献   

15.
We have developed low temperature formation methods of SiO2/Si and SiO2/SiC structures by use of nitric acid, i.e., nitric acid oxidation of Si (or SiC) (NAOS) methods. By use of the azeotropic NAOS method (i.e., immersion in 68 wt% HNO3 aqueous solutions at 120 °C), an ultrathin (i.e., 1.3-1.4 nm) SiO2 layer with a low leakage current density can be formed on Si. The leakage current density can be further decreased by post-metallization anneal (PMA) at 200 °C in hydrogen atmosphere, and consequently the leakage current density at the gate bias voltage of 1 V becomes 1/4-1/20 of that of an ultrathin (i.e., 1.5 nm) thermal oxide layer usually formed at temperatures between 800 and 900 °C. The low leakage current density is attributable to (i) low interface state density, (ii) low SiO2 gap-state density, and (iii) high band discontinuity energy at the SiO2/Si interface arising from the high atomic density of the NAOS SiO2 layer.For the formation of a relatively thick (i.e., ≥10 nm) SiO2 layer, we have developed the two-step NAOS method in which the initial and subsequent oxidation is performed by immersion in ∼40 wt% HNO3 and azeotropic HNO3 aqueous solutions, respectively. In this case, the SiO2 formation rate does not depend on the Si surface orientation. Using the two-step NAOS method, a uniform thickness SiO2 layer can be formed even on the rough surface of poly-crystalline Si thin films. The atomic density of the two-step NAOS SiO2 layer is slightly higher than that for thermal oxide. When PMA at 250 °C in hydrogen is performed on the two-step NAOS SiO2 layer, the current-voltage and capacitance-voltage characteristics become as good as those for thermal oxide formed at 900 °C.A relatively thick (i.e., ≥10 nm) SiO2 layer can also be formed on SiC at 120 °C by use of the two-step NAOS method. With no treatment before the NAOS method, the leakage current density is very high, but by heat treatment at 400 °C in pure hydrogen, the leakage current density is decreased by approximately seven orders of magnitude. The hydrogen treatment greatly smoothens the SiC surface, and the subsequent NAOS method results in the formation of an atomically smooth SiO2/SiC interface and a uniform thickness SiO2.  相似文献   

16.
Boron nitride thin films were deposited on silicon carbide fibers by chemical vapor deposition at atmospheric pressure from the single source precursor B-trichloroborazine (Cl3B3N3H3, TCB). The film growth and structure, as a function of deposition temperature, hydrogen gas flow rate, and deposition time, were discussed. The deposition rate reaches a maximum at 1000 °C, then decreases with the increasing of temperature, and the apparent activation energy of the reaction is 127 kJ/mol. Above 1000 °C, gas-phase nucleation determines the deposition process. The deposited BN films were characterized by Raman spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The effect of BN interphase on the mechanical properties of the unidirectional SiC fiber-reinforced SiC matrix (SiC/SiC) composites was also investigated. The results show that the flexural strength of SiC/SiC composites with and without coating is 276 MPa and 70 MPa, respectively, which indicates that BN interphase coating deposited from B-trichloroborazine precursor can effectively adjust the fiber/matrix interface, thus causing a dramatic increase in the mechanical properties of the composites.  相似文献   

17.
To prevent Co diffusion from cemented carbides at high temperatures, we fabricated TaNx coatings by reactive direct current (d.c.) magnetron sputtering onto 6 wt.% cobalt cemented carbide substrates, to form diffusion barrier layers. Varying the nitrogen flow ratio, N2/(Ar + N2), from 0.05 to 0.4 during the sputtering process had a significant effect on coating structure and content. Deposition rate reduced as the nitrogen flow ratio increased. The effects of nitrogen flow ratio on the crystalline characteristics of the TaNx coatings were examined by X-ray diffraction. The TaNx coatings annealing conditions were 500, 600, 700, and 800 °C for 4 h in air. We evaluated the performance of the diffusion barrier using both Auger electron spectroscopy depth-profiles and X-ray diffraction techniques. We also investigated oxidation resistance of the TaNx coatings annealed in air, and under a 50 ppm O2-N2 atmosphere, to evaluate the fabricated layers effectiveness as a protective coating for glass molding dies.  相似文献   

18.
Electrophoretic deposition (EPD) was showed to be a feasible and convenient method to fabricate NiCoCrAlY coatings on nickel based supperalloys. The microstructure and composition of the NiCoCrAlY coatings after vacuum heat treatment were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive X-ray analysis (EDAX). Isothermal-oxidation test was performed at 1100 °C in static air for 100 h. The results show that the major phases in electrophoretic deposited and vacuum heat treated NiCoCrAlY coating are γ-Ni and γ′-Ni3Al phases, also there is an extremely small quantity of Al2O3 in the coating. Composition fluctuations occur in the coating and a certain amount of titanium diffuse from the superalloy substrate to the top of the coating during vacuum heat treatment. The oxidation test results exhibit that the oxidation kinetics of this coating has two typical stages. The protective oxide layer is mainly formed in the initial linear growth stage and then the oxide layer hinders further oxidation of the coating in the subsequent parabolic growth stage. The coating can effectively protect the superalloy substrate from oxidation. A certain amount of rutile TiO2 is formed in the coating during oxidation and it is adverse to the oxidation resistance of the coating.  相似文献   

19.
Thermal oxidation temperature dependence of 4H-SiC MOS interface   总被引:1,自引:0,他引:1  
The thermal oxidation temperature dependence of 4H-silicon carbide (SiC) is systematically investigated using X-ray photoelectron spectroscopy (XPS) and capacitance-voltage (C-V) measurements. When SiC is thermally oxidized, silicon oxycarbides (SiCxOy) are first grown and then silicon dioxide (SiO2) is grown. It is identified by XPS that the SiO2 films fall into two categories, called SiC-oxidized SiO2 and Si-oxidized SiO2 in this paper. The products depend on thermal oxidation temperature. The critical temperature is between 1200 and 1300 °C. The interface trap density (Dit) of the sample possessing Si-oxidized SiO2, at thermal oxidation temperature of 1300 °C, is lower than SiC-oxidized SiO2 at and below 1200 °C, suggesting that a decrease of the C component in SiO2 film and SiO2/SiC interface by higher oxidation temperature improves the metal-oxide-semiconductor (MOS) characteristics.  相似文献   

20.
A protective quasicrystalline AlFeCu coating was deposited on TIMETAL 834 substrate by nonreactive magnetron sputtering in order to improve resistance of the alloy to oxidation. Microstructure characterisation of the substrate and the coating was performed by analytical scanning- and transmission electron microscopy as well as X-ray diffractometry. Depending on annealing temperature and time, the deposited coating (2.7 μm thick) has a different microstructure. The coating in Specimen 1 (annealed 600 °C/4 h in vacuum) consisted of two zones: outer, composed of Al5Fe2 and Al2Cu3 phases and inner, in which only quasicrystalline ψ phase was present. The coating in Specimen 2 (annealed 600 °C/4 h + 700 °C/2 h in vacuum) was fully quasicrystalline and consisted of icosahedral ψ phase.Both coatings exhibit higher microhardness than the substrate material. It was established that the applied surface treatment essentially improves oxidation resistance of the alloy tested at 750 °C during 250 h in static air. Sample weight gain was 60% lower than in the case of uncoated sample. Oxide scale spallation occurred for uncoated alloy while the coated one did not show any spallation. It was found that the very brittle scale formed during oxidation on the uncoated alloy was consisting of TiO2, while that on the coated one consisted mainly of α-Al2O3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号