首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, p-type ZnO films with excellent electrical properties were prepared by ultrasonic spray pyrolysis (USP) combining with a N-Al codoping technique. The influence of the substrate temperature and annealing temperature on electrical properties of ZnO films was investigated. The growth and doping process of ZnO films was explored by thermogravimetry, differential scanning calorimetry and mass spectrum (TG-DSC-MS) measurements. It is suggested that the variation of electrical properties of ZnO films with the substrate temperature and annealing temperature results from the removal of H element out of the films.  相似文献   

2.
退火对ZnO薄膜光学特性的影响   总被引:3,自引:1,他引:2  
用射频磁控溅射法在蓝宝石衬底上制备出ZnO薄膜,通过X射线衍射(XRD)、扫描电镜(SEM)和光致发光(PL)谱等研究了退火温度对ZnO薄膜结构和光学性质的影响。测量结果显示,所制备的ZnO薄膜为六角纤锌矿结构,具有沿c轴的择优取向;随着退火温度的升高,(002)XRD峰强度和平均晶粒尺寸增大,(002)XRD峰半高宽(FWHM)减小,光致发光紫外峰强度增强。结果证明,用射频磁控溅射法通过适当控制退火温度可得到高质量ZnO薄膜。  相似文献   

3.
利用磁控溅射法,采用亚分子分层掺杂技术交替溅射Co靶和ZnO靶,在Si衬底上制备了不同氢氩流量比的H:ZCO薄膜样品,研究了氢氩流量比对薄膜结构特性和磁学性能的影响。所制备的薄膜样品具有c轴择优取向。由于H对表面和界面处悬挂键的钝化作用,随H2流量比的增加,薄膜的择优取向变差。磁性测量结果显示,薄膜样品的铁磁性随着氢氩流量比的增大而增强。XPS结果表明,随着H含量的增大,金属态Co团簇的相对含量逐渐增加,而氧化态Co离子的相对含量逐渐减小。H:ZCO样品中的铁磁性可能来源于Co金属团簇,H的掺入促使ZnO中的Co离子还原成Co金属团簇,从而增强了薄膜样品的室温铁磁性。  相似文献   

4.
Zinc oxide thin films have been deposited on glass substrates at a substrate temperature of 673 K by spray pyrolysis. The samples are annealed in ambient atmosphere at various temperatures. The effect of annealing on structural, electrical, and optical properties of ZnO films has been investigated. X-ray diffraction patterns show that crystallinity of the ZnO films has been improved after annealing. The morphology of ZnO thin films is studied by atomic force microscopy. The tensile strain (compressive stress) is found to decrease with increase in annealing temperature which indicates the relaxation of tensile strain in ZnO thin films. A decrease in energy band gap is observed with increase of annealing temperature. The mechanism of blue-green luminescence of ZnO thin film has been analyzed. The resistivity is found to decrease with annealing temperature.  相似文献   

5.
In this paper, the effect of annealing temperature on optical constants was studied. The ZnO films were deposited on microscopic glass substrates using the sol-gel method for various annealing temperatures. The deposited zinc oxide (ZnO) films were characterized by an X-ray diffractometer (XRD), a spectrophotometer and scanning electron microscopy (SEM). The transmittance spectra recorded through the spectrophotometer exhibits 90% transmittance. The XRD spectra showed polycrystalline nature of ZnO film. Optical constants were determined through transmittance spectra using an envelope method. It was found that there was a significant effect of annealing temperature on the refractive index and extinction coefficient of deposited ZnO films. In this experiment, the optimum refractive index value of 1.97 was obtained at 350 °C annealing temperature at visible (vis) wavelength. The optical energy gap was found to be of ∼3.2 eV for all the samples. The top view of SEM showed the ZnO grain growth on the glass substrates.  相似文献   

6.
ZnO thin films were first prepared on Si(111) substrates using a radio frequency magnetron sputtering system. Then the as-grown ZnO films were annealed in oxygen ambient at temperatures of 700, 800, 900, and 1000°C , respectively. The morphologies of ZnO films were studied by an atom force microscope (AFM). Subsequently, GaN epilayers about 500 nm thick were deposited on the ZnO buffer layers. The GaN/ZnO films were annealed in NH3 ambient at 900°C. The microstructure, morphology and optical properties of GaN films were studied by x-ray diffraction (XRD), AFM, scanning electron microscopy (SEM) and photoluminescence (PL). The results are shown, their properties having been investigated particularly as a function of the ZnO layers. For better growth of the GaN films, the optimal annealing temperature of the ZnO buffer layers was 900°C.  相似文献   

7.
Pure and Cu-doped ZnO (ZnO:Cu) thin films were deposited on glass substrates using radio frequency (RF) reactive magnetron sputtering. The effect of substrate temperature on the crystallization behavior and optical properties of the ZnO:Cu films have been studied. The crystal structures, surface morphology and optical properties of the films were systematically investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and a fluorescence spectrophotometer, respectively. The results indicated that ZnO films showed a stronger preferred orientation toward the c-axis and a more uniform grain size after Cu-doping. As for ZnO:Cu films, the full width at half maxima (FWHM) of (0 0 2) diffraction peaks decreased first and then increased, reaching a minimum of about 0.42° at 350 °C and the compressive stress of ZnO:Cu decreased gradually with the increase of substrate temperature. The photoluminescence (PL) spectra measured at room temperature revealed two blue and two green emissions. Intense blue-green luminescence was obtained from the sample deposited at higher substrate temperature. Finally, we discussed the influence of annealing temperature on the structural and optical properties of ZnO:Cu films. The quality of ZnO:Cu film was markedly improved and the intensity of blue peak (∼485 nm) and green peak (∼527 nm) increased noticeably after annealing. The origin of these emissions was discussed.  相似文献   

8.
Zinc oxide (ZnO) thin films were deposited on microscope glass substrates by sol-gel spin coating method. Zinc acetate (ZnAc) dehydrate was used as the starting salt material source. A homogeneous and stable solution was prepared by dissolving ZnAc in the solution of monoethanolamine (MEA). ZnO thin films were obtained after preheating the spin coated thin films at 250 °C for 5 min after each coating. The films, after the deposition of the eighth layer, were annealed in air at temperatures of 300 °C, 400 °C and 500 °C for 1 h. The effect of thermal annealing in air on the physical properties of the sol-gel derived ZnO thin films are studied. The powder and its thin film were characterized by X-ray diffractometer (XRD) method. XRD analysis revealed that the annealed ZnO thin films consist of single phase ZnO with wurtzite structure (JCPDS 36-1451) and show the c-axis grain orientation. Increasing annealing temperature increased the c-axis orientation and the crystallite size of the film. The annealed films are highly transparent with average transmission exceeding 80% in the visible range (400-700 nm). The measured optical band gap values of the ZnO thin films were between 3.26 eV and 3.28 eV, which were in the range of band gap values of intrinsic ZnO (3.2-3.3 eV). SEM analysis of annealed thin films has shown a completely different surface morphology behavior.  相似文献   

9.
ZnO films with strong c-axis-preferred orientation have been prepared by a single source chemical vapor deposition technique using zinc acetate as source material at the growth temperature of 230 °C. The strong UV and blue emissions were observed in the photoluminescence spectra of as-grown films. A small quantity of residual zinc acetate was reserved on the surface of as-grown ZnO films and the emission mechanism of blue luminescence was nearly related to the CH3COO- of unidentate type. The blue emission disappeared and the green emission appeared after annealing treatment. The green emission is related to the singly ionized oxygen vacancies.  相似文献   

10.
Ag-doped ZnO (ZnO:Ag) thin films were grown on glass substrates by E-beam evaporation technique. The structural, electrical and optical properties of the films were investigated as a function of annealing temperature. The films were subjected to post annealing at different temperatures in the range of 350-650 °C in an air ambient. All the as grown and annealed films at temperature of 350 °C showed p-type conduction. The films lost p-type conduction after post annealing treatment temperature of above 350 °C, suggesting a narrow post annealing temperature window for the fabrication of p-type ZnO:Ag films. ZnO:Ag film annealed at 350 °C revealed lowest resistivity of 7.25 × 10−2 Ω cm with hole concentration and mobility of 5.09 × 1019 cm−3 and 1.69 cm2/V s, respectively. Observation of a free-to-neutral-acceptor (e,Ao) and donor-acceptor-pair (DAP) emissions in the low temperature photoluminescence measurement confirms p-type conduction in the ZnO:Ag films.  相似文献   

11.
Nitrogen-doped ZnO (ZnO:N) films are prepared by thermal oxidation of sputtered Zn3N2 layers on A1203 substrates. The correlation between the structural and optical properties of ZnO:N films and annealing temperatures is investigated. X-ray diffraction result demonstrates that the as-sputtered Zn3N2 films are transformed into ZnO:N films after annealing above 600℃. X-ray photoelectron spectroscopy reveals that nitrogen has two chemical states in the ZnO:N films: the No acceptor and the double donor (N2)o. Due to the No acceptor, the hole concentration in the film annealed at 700℃ is predicted to be highest, which is also confirmed by Hall effect measurement. In addition, the temperature dependent photoluminescence spectra allow to calculate the nitrogen acceptor binding energy.  相似文献   

12.
研究了作为缓冲层的ZnO薄膜在不同的退火时间、退火温度下退火对Si衬底上生长ZnSe膜质量的影响。当溅射有ZnO膜的Si(111)衬底的退火条件变化时,从X射线衍射谱(XRD)和光致发光谱(PL)中可见,ZnSe(111)膜的晶体质量有较大的变化。变温的PL谱表明,Si衬底上生长的具有ZnO缓冲层的ZnSe膜的近带边发射峰起源于自由激子发射。  相似文献   

13.
The effects of the thickness variation, substrate type and annealing on the crystallinity parameters, luminescent and optical properties of the zinc oxide (ZnO) thin films were reported. The thin films were deposited on the glass and the amorphous quartz substrates by the standard RF-magnetron sputtering method using ZnO targets in the argon atmosphere. It has been found that the films deposited on the glass substrate manifest a clear size effect. Both the structural and the optical parameters show clearly minima on their thickness dependences. It has been shown that annealing of the comparatively thick ZnO films leads to increase of the crystallite sizes that are followed by a considerable rise of the cathodoluminescence intensity. The corresponding model of the crystallite growth is proposed.  相似文献   

14.
The structural and luminescence related optical behaviours of Au ion implanted ZnO films grown by magnetic sputtering and their post implantation annealing behaviours in the temperature range of 100-700 °C have been investigated. Optical absorption and transmittance spectra of the films indicate that band edge of Au-implanted ZnO has shifted to high energy range and optical band gap has increased, because the sharp difference of thermal expansion induces the lattice mismatch between ZnO and SiO2. PL spectra reveal that UV and visible luminescence bands of ZnO films can be improved after thermal annealing due to recovery of defects and Au ions incorporation. Importantly, green luminescence band of 530 nm has been only observed in the Au-implanted and subsequently annealed ZnO films and it enhances with the increasing annealing temperature, which can be related to Au atoms or clusters in ZnO films. Furthermore, X-ray photoelectron spectroscopy measurements reveal that the Au0 is dominant state in Au implanted and annealed ZnO films. Possible mechanisms, such as optical transitions of Au atoms or clusters and deep level luminescence of ZnO, have been proposed for green emission.  相似文献   

15.
Zinc oxide (ZnO) thin films were grown on Si (1 0 0) substrates by pulsed laser deposition (PLD) using two-step epitaxial growth method. Low temperature buffer layer (LTBL) was initially deposited in order to obtain high quality ZnO thin film; the as-deposited films were then annealed in air at 700 °C. The effects of LTBL and annealing treatment on the structural and luminescent properties of ZnO thin film were investigated. It was found that tensile strain was remarkably relaxed by employing LTBL and the band-gap redshifted, correspondingly. The shift value was larger than that calculated from band-gap theories. After annealing treatment, it was found that the annealing temperature with 700 °C has little influence on strains of ZnO films with LTBLs other than directly deposited film in our experiments. Interestingly, the different behaviors in terms of the shift of ultraviolet (UV) emission after annealing between films with and without buffer were observed, and a tentative explanation was given in this paper.  相似文献   

16.
退火对多晶ZnO薄膜结构与发光特性的影响   总被引:19,自引:0,他引:19       下载免费PDF全文
用射频反应溅射法在Si(111)衬底上制备了C轴取向的多晶ZnO薄膜,通过不同温度的退火处理,研究了退火对多晶ZnO薄膜结构和发光特性的影响.由x射线衍射得知,随退火温度的升高,晶粒逐渐变大,薄膜中压应力由大变小至出现张应力.光致发光测量发现,样品在430nm附近有一光致发光峰, 峰的强度随退火温度升高而减弱,联合样品电阻率随退火温度升高而逐渐变大的测量及能级图,推测出ZnO薄膜中的蓝光发射主要来源于锌填隙原子缺陷能级与价带顶能级间的跃迁. 关键词: ZnO薄膜 退火 光致发光 射频反应溅射  相似文献   

17.
Photoluminescence and absorption in sol-gel-derived ZnO films   总被引:1,自引:0,他引:1  
Highly c-axis-oriented ZnO films were obtained on corning glass substrate by sol-gel technique. The characteristics of photoluminescence (PL) of ZnO, as well as the exciton absorption in the absorption (UV) spectra are closely related to the post-annealing treatment. The difference between PL peak position and the absorption edge, designated as Stokes shift, is found to decrease with the increase of annealing temperature. The minimum Stokes shift is about 150 meV. The decrease of Stokes shift is attributed to the decrease in carrier concentration in ZnO film with annealing. X-ray diffraction, surface morphology and refractive index results indicate an improvement in crystalline quality with annealing. Annealed films also exhibit a green emission centered at ∼520 nm with activation energy of 0.89 eV. The green emission is attributed to the electron transition from the bottom of the conduction band to the antisite oxygen OZn defect levels.  相似文献   

18.
A simple growth route towards ZnO thin films and nanorods   总被引:1,自引:0,他引:1  
Highly orientated ZnO thin films and the self-organized ZnO nanorods can be easily prepared by a simple chemical vapor deposition method using zinc acetate as a source material at the growth temperature of 180 and 320 °C, respectively. The ZnO thin films deposited on Si (100) substrate have good crystallite quality with the thickness of 490 nm after annealing in oxygen at 800 °C. The ZnO nanorods grown along the [0001] direction have average diameter of 40 nm with length up to 700 nm. The growth mechanism for ZnO nanorods can be explained by a vapor-solid (VS) mechanism. Photoluminescence (PL) properties of ZnO thin films and self-organized nanorods were investigated. The luminescence mechanism for green band emission was attributed to oxygen vacancies and the surface states related to oxygen vacancy played a significant role in PL spectra of ZnO nanorods.  相似文献   

19.
ZnO:Al thin films with c-axis preferred orientation were deposited on glass and Si substrates using RF magnetron sputtering technique. The effect of substrate on the structural and optical properties of ZnO:Al films were investigated. The results showed a strong blue peak from glass-substrate ZnO:Al film whose intensity became weak when deposited on Si substrate. However, the full width at half maxima (FWHM) of the Si-substrate ZnO:Al (0 0 2) peaks decreased evidently and the grain size increased. Finally, we discussed the influence of annealing temperature on the structural and optical properties of Si-substrate ZnO:Al films. After annealing, the crystal quality of Si-substrate ZnO:Al thin films was markedly improved and the intensity of blue peak (∼445 nm) increased noticeably. This observation may indicate that the visible emission properties of the ZnO:Al films are dependent more on the film crystallinity than on the film stoichiometry.  相似文献   

20.
Phosphorus-doped p-type ZnO thin films have been realized by metalorganic chemical vapor deposition (MOCVD). The conduction type of ZnO films is greatly dependent on the growth temperature. ZnO films have the lowest resistivity of 11.3 Ωcm and the highest hole concentration of 8.84 × 1018 cm−3 at 420 °C. When the growth temperature is higher than 440 °C, p-type ZnO films cannot be achieved. All the films exhibited p-type conduction after annealing, and the electrical properties were improved comparing with the as-grown samples. Secondary ion mass spectroscopy (SIMS) test proved that phosphorus (P) has been incorporated into ZnO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号