首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enhanced fluorescence from Rhodamine B (RB) mixed with gold colloids has been observed under ultraviolet irradiation. Spectroscopic studies show that with the increasing gold colloids content, the fluorescence of RB at about 590 nm increases firstly and then decreases with slight red shift. These features observed in the experiment can be explained by the local electric field enhancement via surface plasmon resonance (SPR) of gold nanoparticles. Fluorescence enhancement is obtained when the emission frequency of RB lies within the bandwidth of local field enhancement from gold nanoparticles. Theoretical calculation results show that the local field band red shifts obviously with increase the thickness of dye shell which capped on gold particle, whereas the fluorescence band of RB is fixed around 590 nm. Therefore, the red shift and non-monotonic change of fluorescence intensity from RB is attributed to the dye shell dependent red shift of local field band of gold particles.  相似文献   

2.
Colloidal cupric oxide (CuO) nanoparticles were formed by using a colloid-thermal synthesis process. X-ray diffraction patterns, transmission electron microscopy (TEM) images, high-resolution TEM images, and X-ray energy dispersive spectrometry profiles showed that the colloidal CuO nanoparticles were formed. The optical band-gap energy of CuO nanoparticles at 300 K, as determined from the absorbance spectrum, was 3.63 eV. A photoluminescence spectrum at 300 K showed that a dominant emission peak appeared at the blue region. X-ray photoelectron spectroscopy profiles showed that the O 1s and the Cu 2p peaks corresponding to the CuO nanoparticles were observed.  相似文献   

3.
We have studied luminescence enhancement of zinc oxide (ZnO) nanoparticles with the average size of 30 nm on several metal surfaces at low temperatures. Bandedge luminescence originated from bound exciton (BE) annihilation is observed at 3.360 eV, and strongly depends on the kind and surface roughness of metal. The luminescence intensity is about 10 times larger for Ag surface than that for quartz surface. Furthermore, the luminescence increases remarkably when the roughness of Ag surface is almost the same as the particle size. The intensity ratio of the fast decay component to the slow one decreases for Ag surface compared with quartz. These results suggest that the luminescence enhancement is partially attributed to suppressing of the nonradiative recombination process in ZnO nanoparticles on metal surface.  相似文献   

4.
Manganese nanoparticles were grown in silica glass and silica film on silicon substrate by annealing of the sol-gel prepared porous silicate matrices doped with manganese nitrate. Annealing of doped porous silicate matrices was performed at various conditions that allowed to obtain the nanocomposite glasses with various content of metallic Mn. TEM of Mn/SiO2 glass indicates the bimodal size distribution of Mn nanoparticles with mean sizes of 10.5 nm and 21 nm. The absorption and photoluminescence spectra of Mn/SiO2 glasses were measured. In the absorption spectra at 300 nm (4.13 eV) we observed the band attributed to the surface plasmon resonance in Mn nanoparticles. The spectra proved the creation of Mn2+ and Mn3+ ions in silica glass as well. The absorption spectra of Mn/SiO2 glasses annealed in air prove the creation of manganese oxide Mn2O3. The measured reflection spectra of Mn/SiO2 film manifest at 240-310 nm the peculiarity attributed to surface plasmons in Mn nanoparticles.  相似文献   

5.
Diamond-like carbon films containing Ag and Cu in nanocrystalline form were deposited onto SnO2-coated glass substrates by electrochemical technique. Relative amount of silver and copper to be incorporated in the DLC matrix was tailored by varying the amount of silver and copper containing salts in the electrolyte. Current density was adjusted to obtain films with different crystallite size while the volume fraction of the metal nanocrystallites was altered by varying the dilution of the solution containing the salts. Raman studies indicated the presence of two peaks located at ∼1350 cm−1 (D-line) and 1566 cm−1 (G-line) for all the films and the relative intensities of these peaks changed with the amount of metal incorporation in it. The FTIR spectra were seen to be dominated by a peak at 975 cm−1 for C-H out of plane deformation modes along with peaks for C-H bending, C-H stretching and C-C stretching modes at 858, 1113 and 1189 cm−1, respectively. The optical absorption spectra showed a single plasmon band instead of two characteristic bands for Ag and Cu. We ascribe this to nanophase limited interfacial alloying at the Ag-Cu interface. The experimental observation was analyzed in the light of Mie theory.  相似文献   

6.
7.
We report on ZnO nanosheets and nanorods synthesized by thermal oxidation of zinc films deposited on carbon fiber surfaces. The structure and optical properties are characterized by x-ray diffraction, scanning electron microscopy and photoluminescence spectrum. An orange-red emission around 683 nm is found in the PL spectrum when the sample prepaxs at 400℃ for four hours in air. With annealing temperature increasing from 400℃ to 500℃, the blue shift is observed.  相似文献   

8.
Au-core CdS-shell composite nanoparticles were synthesized by a direct self-assembly process and integrated into BaTiO3 thin films. Characterization by transmission electron microscopy showed that the average diameter of these composite nanoparticles was about 8 nm. Using the femtosecond time-resolved optical Kerr effect method, we investigated the third-order nonlinear optical response of the Au@CdS nanoparticles embedded in the BaTiO3 thin films at a wavelength of 800 nm. An ultrafast nonlinear response and a large effective third-order nonlinear susceptibility of χ(3)=7.7×10-11 esu were observed. We attributed the enhancement of the third-order optical nonlinearity to a localized electric field effect originating from the core-shell structure under off-surface-plasmon resonance conditions. Received: 13 May 2002 / Revised version: 23 October 2002 / Published online: 3 April 2003 RID="*" ID="*"Corresponding author. Fax: +86-21/6510-4949, E-mail: sxqian@fudan.ac.cn  相似文献   

9.
Thermally stabilized channel waveguides with Bragg gratings were fabricated by the space-selective precipitation technique of crystalline Ge nanoparticles using KrF excimer laser irradiation. The periodic structures consisting of Ge nanoparticles were formed in Ge-B-SiO2 thin glass films after exposure to an interference pattern of the laser followed by annealing at 600 °C. The channel waveguides with the periodic structures were fabricated by the cladding of the patterned Cr layers on the films. The diffraction peak for the TE-like mode of 11.8 dB depth was observed clearly at a wavelength of 1526.4 nm, indicating that the periodic structure also served as the optical band-pass filter in optical communication wavelength. The spectral shape, diffraction efficiency, and diffraction wavelength remained unchanged even after annealing at 400 °C. Furthermore, a low temperature dependence of the diffraction wavelength - as low as 8.1 pm/°C - was achieved. The diffraction efficiency was further enhanced after subsequent annealing at 600 °C. The space-selective precipitation technique is expected to be useful for the fabrication of highly reliable optical filters or durable sensing devices operating at high temperature.  相似文献   

10.
Colloidal CdSe nanoparticles (NPs), passivated with CdS and ZnS, were characterized by resonant Raman scattering and photoluminescence (PL). The effect of the passivating shell, its volume and formation procedure on optical and vibrational spectra is discussed. Analyzing the Raman peaks due to optical phonons inside the core and those related to the core-shell interface allows some understanding of the relation between the core-shell structure and its PL properties to be achieved. In particular, a compositional intermixing at the core/shell interface of the NPs was deduced from the Raman spectra, which can noticeably affect their PL intensity.  相似文献   

11.
Analytical expressions of the optical absorption coefficient and the change in refractive index associated with intraband relaxation in a cylindrical quantum dot are obtained by using the density matrix formalism. Energy levels in conduction band were calculated with finite confining potential in the framework of the effective-mass envelope-function theory. Numerical calculations on a typical GaAs/AlβGa1−βAs QD are performed. It is found that the absorption and refraction index change sensitively depend not only on the incident optical wave but also on the dot size and the Al mole fraction β in the AlβGa1−βAs material.  相似文献   

12.
Optical absorption coefficients and refractive index changes associated with intersubband transition in a parabolic cylinder quantum dot are theoretically investigated. In this regard, the electronic structure of the dot is studied using the one band effective mass theory, and by means of the compact-density matrix approach the linear and nonlinear optical absorption coefficients and refractive index changes are calculated. The effects of the size of the dot, optical intensity and electromagnetic field polarization on the optical absorption coefficient and refractive index changes are investigated. It is found that absorption and refractive index changes are strongly affected not only by the size of the dot but also by optical intensity and the electromagnetic field polarization.  相似文献   

13.
We synthesize Y3Al5O12:Ce3+ (YAG:Ce3+) nanoparticles in the presence of citric acid by glycothermal method. Fourier transform infrared absorption spectroscopy measurement indicates that the intensity of the peak corresponding to carboxyl groups coordinating to the nanoparticles increases with increasing amount of citric acid. At the same time, the primary particle diameter decreases from 10.2 to 4.0 nm. In addition, the internal quantum efficiency of the photoluminescence (PL) due to the 4f-5d transition of Ce3+ increases from 22.0% to 40.1% with increasing amount of citric acid. Two kinds of PL decay lifetimes, 16-26 and 72-112 ns, are detected for YAG:Ce3+ nanoparticles, whereas the micron sized YAG:Ce3+ bulk shows the lifetime of 57 ns. We discuss these phenomena from the aspects of the coordination of citric acid and the incorporation of Ce3+ ions into the nanoparticles.  相似文献   

14.
We report a novel method of growing red luminescent (635 nm) Mn-doped CdS (CdS:Mn) nanoparticles capped by an inorganic shell of Mn(OH)2. CdSO4, Na2S2O3 and Mn(NO3)2 were used as the precursors, and thioglycerol (C3H8O2S) was employed as the capping agent and also the catalyst of the reaction. Using these materials resulted in very slow rate of the reaction and particles growth. The self-assembled one-pot process was performed at pH of 8 and Mn:Cd ratio of 10, and took about 10 days for completion. CdS:Mn nanoparticles are slowly formed in the first day of the process; however, the luminescence is weak. After 7 days, the solution turns white turbid through the formation of additional particles, which precipitate on the walls on the next day. At this stage, a relatively strong red luminescence at 635 nm appears from transparent solution of the CdS:Mn nanoparticles. The white deposit on the walls turns to dark-brown color and luminescence increases on the 9th day. Finally, the CdS:Mn nanoparticles agglomerate and precipitate out of the solution on 10th day. X-ray diffraction and optical spectroscopy showed crystalline phase CdS nanoparticles with an average size of 3.6 nm. We explain the luminescence enhancement based on the formation of a Mn(OH)2 shell on the surface of the CdS:Mn nanoparticles during the precipitation stage. This can passivate the S dangling bonds located on the particles surface. As the surface Cd sites are previously capped with thioglycerol molecules, a complete surface passivation is achieved and results in emergence of high-intensity luminescence.  相似文献   

15.
Gallium nitride (GaN) doped by Eu3+ and Tb3+ ions have been synthesized using powder technology. The emission and absorption spectra have been obtained by using photoluminesence technique and correlated with the local structural environments. The room temperature yellow emission from GaN grains as well as from Eu3+ and Tb3+ ions has been observed for nano- as well as for microGaN grains. Additionally, for GaN:1%Eu3 micrograins the blue emission from GaN nanocrystals has been observed.  相似文献   

16.
Jian Zhu 《Applied Surface Science》2007,253(21):8729-8733
The dependence of the local field factor around dielectric shell coated silver nanospheres was investigated by theoretical calculation as a function of the spatial distance. The local field factors in the dielectric shell are sensitive to the distance from particle center and shell thickness. When the shell dielectric constant is greater than that of surrounding medium, the maximum of local field factor at inner surface of the shell red shift and increases nonlinearly with increasing the shell thickness. On the contrary, when shell dielectric constant is less than that of surrounding medium, increasing the shell thickness leads the maximum of local field factor at inner surface blue shifts and decreases nonlinearly. However, with increasing the shell thickness, the maximum of local field factor at exterior surface of the shell always decrease nonlinearly. Furthermore, with increasing shell thickness, all these variations get gentle approach to a constant value when the shell thickness is two times of the core radius. When the core and shell diameter have fixed values, the local field factors in dielectric shell decrease with increasing the distance from particle center, but the peak position is not sensitive to the distance.  相似文献   

17.
Not only vertically aligned ZnO nanowires but also horizontally aligned ZnO nanowires have been successfully grown on the annealed (0 0 0 1) c-cut and (1 1 2 0) a-cut sapphire substrates, respectively using catalyst-free nanoparticle-assisted pulsed-laser ablation deposition (NAPLD). The as-synthesized ZnO nanowires exhibit an ultraviolet emission at around 390 nm and the absent green emission under room temperature. The single ZnO nanowire was collected in the electrode gap by dielectrophoresis (DEP). Under the optical pumping, the single ZnO nanowire exhibited UV emission at around 390 nm with several sharp peaks whose energy spacings are almost constant, which greatly differs from the broad UV emission of the film with many nanowires, suggesting ZnO nanowires as candidates for laser media. The single ZnO nanowire showed polarized photoluminescence (PL). The as-synthesized ZnO nanowires could find many interesting applications in short-wavelength light-emitting diode (LED), laser diode and gas sensor.  相似文献   

18.
Polarization-resolved forward degenerate four-wave mixing (DFWM) in a nonresonant region revealed the effective third-order nonlinear susceptibility of colloidal CdTe nanocrystals (NCs) with the size near the Bohr radius and various concentrations. The second hyperpolarizabilities, and , of the CdTe NCs were ∼1.15 × 10−41 m5/V2 and ∼3.01 × 10−42 m5/V2 from the measurement of the concentration-dependent third-order nonlinear susceptibility of CdTe NCs, respectively. The ratio (/) of the hyperpolarizabilities was ∼0.26, which indicated a large contribution of an electronic polarization process to the third-order nonlinearity of CdTe NCs.  相似文献   

19.
We investigated the effect of rapid thermal annealing (RTA) on the photoluminescence (PL) and electroluminescence of the In0.53Ga0.47As/In0.53(Ga0.6Al0.4)0.47As multiple quantum well (MQW) laser structure with InGaAlAs barrier layers provided by the digital-alloy technique. The SiO2- (Si3N4-) capped samples followed by the RTA exhibited a significant improvement of PL intensity without any appreciable shifts in PL peak energy for settings of up to 750 °C (800 °C) for 45 s. This improvement is attributed to the annealing of nonradiative defects in InAlAs layers of digital-alloy InGaAlAs and partially those near the heterointerfaces of the digital-alloy layers. The InGaAs/InGaAlAs MQW laser diodes fabricated on the samples annealed at 850 °C show a hugely improved lasing performance. Received: 2 September 2002 / Accepted: 3 September 2002 / Published online: 17 December 2002 RID="*" ID="*"Corresponding author. Fax: +82-62/970-2204, E-mail: ytlee@kjist.ac.kr  相似文献   

20.
We propose a class of graded colloidal crystalline materials which consist of polydisperse metallodielectric nanoshells stacked in layers. We take the Lekner-Lishchuk summation method to treat the graded systems which are not tractable by conventional approach such as Ewald-Kornfeld methods. It is demonstrated that this kind of graded materials exhibit a series of sharp peaks, which merge in a broadened resonant absorption band in the optical region, in contrast to colloidal crystal containing monodisperse nanoshells or nanoparticles. Effects of various gradient profiles of the ratio of the inner/outer radii in the nanoshells and lattice geometries on the optical properties are discussed. These materials are not hard to fabricate by contemporary nanofabrication techniques and they shall be useful in the engineering of optical nanomaterials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号