首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
NiTi alloy has a unique combination of mechanical properties, shape memory effects and superelastic behavior that makes it attractive for several biomedical applications. In recent years, concerns about its biocompatibility have been aroused due to the toxic or side effect of released nickel ions, which restricts its application as an implant material. Bulk ultrafine-grained Ni50.8Ti49.2 alloy (UFG NiTi) was successfully fabricated by equal-channel angular pressing (ECAP) technique in the present study. A homogeneous and smooth SrO-SiO2-TiO2 sol-gel coating without cracks was fabricated on its surface by dip-coating method with the aim of increasing its corrosion resistance and cytocompatibility. Electrochemical tests in simulated body fluid (SBF) showed that the pitting corrosion potential of UFG NiTi was increased from 393 mV(SCE) to 1800 mV(SCE) after coated with SrO-SiO2-TiO2 film and the corrosion current density decreased from 3.41 μA/cm2 to 0.629 μA/cm2. Meanwhile, the sol-gel coating significantly decreased the release of nickel ions of UFG NiTi when soaked in SBF. UFG NiTi with SrO-SiO2-TiO2 sol-gel coating exhibited enhanced osteoblast-like cells attachment, spreading and proliferation compared with UFG NiTi without coating and CG NiTi.  相似文献   

2.
Ti-6Al-4V alloy was treated with various concentrations (5 wt.%, 15 wt.% and 25 wt.%) of hydrogen peroxide (H2O2) and then heat treated to produce an anatase titania layer. The surface modified substrates were immersed in simulated body fluid (SBF) solution for the growth of an apatite layer on the surface and the formed apatite layer was characterized using various surface characterization techniques. The results revealed that titania layer with anatase nature was observed for all H2O2 treated Ti-6Al-4V alloy, irrespective of the H2O2 concentrations. Ti-6Al-4V alloy treated with 15 wt.% and 25 wt.% of H2O2 induced apatite formation, however 5 wt.% of H2O2 treated Ti-6Al-4V failed to form apatite layer on the surface. The electrochemical behaviour of H2O2 treated specimens in SBF solution was studied using potentiodynamic polarization and electrochemical impedance spectroscopy. Ti-6Al-4V alloy treated with 25 wt.% of H2O2 solution exhibited low current density and high charge transfer resistance values compared to specimens treated with other concentrations of H2O2 and untreated Ti-6Al-4V alloy.  相似文献   

3.
Aluminum alloys with silicon as a major alloying element constitute a class of materials, which provides the most significant part of all shaped castings manufactured. Such alloys have a wide range of applications in the automotive and aerospace industries. The literature presents contradictory results and no satisfactory explanations concerning to resulting microstructures provided by laser surface remelting (LSR) and its effect on the electrochemical behavior of Al-Si alloys. The aim of this study was to investigate the effect of microstructural refinement by LSR on corrosion resistance of an Al-9 wt%Si casting alloy. As-cast samples were subjected to a continuous 1 kW CO2 laser. Corrosion resistance has been analyzed by an electrochemical impedance spectroscopy (EIS) technique and polarization curves carried out in both 0.5 M NaCl and 0.5 M H2SO4 solutions at 25 °C. An equivalent circuit has also been proposed and impedance parameters were simulated by the ZView® software. It was found that the structural modification provided by the LSR process induces a decreasing effect on the corrosion resistance when compared to that of the untreated sample.  相似文献   

4.
NiTi alloy is used as biomaterial due to its unique properties, but the high content of Ni (about 50 at.%) in biomedical NiTi is concerned. Hydroxyapatite and hydroxyapatite/zirconia composite coatings were directly electrodeposited on NiTi alloy surface. The coated samples were characterized using X-ray diffraction, scanning electron microscopy, infrared spectroscopy, bonding strength test, polarization and EIS. Results showed that when ZrO2 was added into the electrolyte, morphology of HAP was changed from thin flake-flower-like crystals to needle-flower-like crystals, and coating was denser. Besides, HAP crystal grains in the coating were preferentially arranged in the [0 0 1] direction. Addition of ZrO2 could improve the bonding strength between the coating and the substrate. Corrosion resistance of NiTi in the simulated body fluid at 37 °C was significantly improved by almost 60 times by electrodeposition of the hydroxyapatite/zirconia composite coating.  相似文献   

5.
Through a low temperature process, a bilayer composite coating was formed on Ti and NiTi shape memory alloy (SMA). The composite coating consisted of a layer of titania, which was formed using a H2O2-oxidation and hot water aging technique, and a layer of apatite, which was formed through an accelerated biomimetic process by immersing as-oxidized metals in a high-strength simulated body fluid (5SBF). Various techniques including X-ray diffraction, scanning electron microscopy and energy dispersive X-ray spectroscopy were used to characterize the surfaces of samples at different stages of coating formation and the coatings formed. Bioactive apatite/TiO2 coatings could be formed on NiTi SMA and firmly bonded to the metal substrate. But there were differences for the formation of the composite coating on Ti and NiTi SMA substrates. The composite coatings formed will render both metals bioactive and hence bone-bonding.  相似文献   

6.
TiO2 films were formed on an NiTi alloy surface by heat treatment in air at 600 °C. Heat treated NiTi shape memory alloys were subsequently alkali treated with 1 M, 3 M and 5 M NaOH solutions respectively, to improve their bioactivity. Then treated NiTi samples were soaked in 1.5SBF to evaluate their in vitro performance. The results showed that the 3 M NaOH treatment is the most appropriate method. A large amount of apatite formed within 1 day's soaking in 1.5SBF, after 7 day's soaking TiO2/HA composite layer formed on the NiTi surface. SEM, XRD, FT-IR and TEM results showed that the morphology and microstructure are similar to the human bone apatite.  相似文献   

7.
Carbon nanofiber (CNF) network supported Pt and Pt-Ni alloy nano particle catalysts were prepared by electrochemical deposition at different deposition cycles. Structure, composition and surface morphology of the Pt/CNF and Pt-Ni/CNF were analyzed using X-ray diffraction, Energy dispersive X-ray spectroscopy and field emission scanning electron microscopy. Structural analysis by XRD revealed a face centered cubic crystal structure for Pt and its alloy. SEM images have shown that the Pt-Ni nanoparticles distributed evenly on the CNF network. The electrocatalytic activity of the Pt/CNF and Pt-Ni/CNF electrodes was verified using an electrochemical linear voltammetrty (ELV), cyclic voltammetry (ECV) and electrochemical impedance spectroscopy (EIS) in an alkaline solution containing 1 M C2H5OH + 1 M KOH. The results show increased catalytic activity with enhancement of the Pt-Ni alloy formation.  相似文献   

8.
Nickel titanium (NiTi) was dip-coated with titania via the sol-gel route using titanium butoxide (Ti(OC4H9)4) as precursor. The as-coated titania film was crystallized to form anatase by treatment in steam at 105 °C. The crystallized film was relatively thick (about 750 nm) and even. Atomic force microscopy (AFM) revealed that the film was dense with a surface roughness of about 3 nm, and was composed of particles of about 100 nm. X-ray diffractometry (XRD) showed that these particles were composed of nanocrystallites of a few nanometers. Nanoindentation tests of the titania film indicated that the film was tough, possibly due to the nano-size of the crystallites. The mean hardness H and elastic modulus E of the coating were about 1.5 and 70 GPa, respectively. Direct pull-off test recorded a mean coating-substrate bonding strength larger than 17 MPa. Electrochemical impedance spectroscopic (EIS) study and cyclic polarization tests showed that the corrosion resistance of the coated NiTi samples in Hanks’ solution was increased by about two orders of magnitude compared with the substrate. Taken together, the present study showed that steam crystallization is a feasible low-temperature treatment method for sol-gel derived titania coating on NiTi in biomedical applications.  相似文献   

9.
Stable superhydrophobic films were prepared on the electrochemical oxidized titania/titanium substrate by a simple immersion technique into a methanol solution of hydrolyzed 1H,1H,2H,2H-perfluorooctyltriethoxysilane [CF3(CF2)5(CH2)2Si(OCH2CH3)3, PTES] for 1 h at room temperature followed by a short annealing at 140 °C in air for 1 h. The surface morphologies and chemical composition of the film were characterized by means of water contact angle (CA), field emission scanning electron microscopy (FESEM), atomic force microscope (AFM) and X-ray photoelectron spectroscopy (XPS). The water contact angle on the surface of this film was measured to be as high as 160°. SEM images showed that the resulting surfaces exhibited special hierarchical structure. The special hierarchical structure along with the low surface energy leads to the high surface superhydrophobicity. The corrosion resistance ability and durance property of the superhydrophobic film in 3.5 wt.% NaCl solution was evaluated by the electrochemical impedance spectroscopy (EIS). The anticorrosion properties of the superhydrophobic film are compared to those of unmodified pure titanium and titania/titanium substrates. The results showed that the superhydrophobic film provides an effective corrosion resistant coating for the titanium metal even with immersion periods up to 90 d in the 3.5 wt.% NaCl solution, pointing to promising future applications.  相似文献   

10.
Optical interferometry techniques were used for the first time to measure the surface resistivity and surface conductivity of anodised aluminium samples in aqueous solution, without any physical contact. The anodization process (oxidation) of the aluminium samples was carried out in different sulphuric acid solutions (1.0–2.5% H2SO4), by the technique of electrochemical impedance spectroscopy (EIS), at room temperature. In the mean time, the real-time holographic interferometric was carried out to measure the thickness of anodised (oxide) film of the aluminium samples during the anodization process. Then, the alternating current (AC) impedance (resistance) of the anodised aluminium samples was determined by the technique of electrochemical impedance spectroscopy (EIS) in different sulphuric acid solutions (1.0–2.5% H2SO4) at room temperature. In addition, a mathematical model was derived in order to correlate between the AC impedance (resistance) and to the surface (orthogonal) displacement of the samples in solutions. In other words, a proportionality constant (surface resistivity or surface conductivity=1/surface resistivity) between the determined AC impedance (by EIS technique) and the orthogonal displacement (by the optical interferometry techniques) was obtained. Consequently the surface resistivity (ρ) and surface conductivity (σ) of the aluminium samples in solutions were obtained. Also, electrical resistivity values (ρ) from other source were used for comparison sake with the calculated values of this investigation. This study revealed that the measured values of the resistivity for the anodised aluminium samples were 2.8×109, 7×1012, 2.5×1013, and 1.4×1012  Ω cm in 1.0%, 1.5%, 2.0%, and 2.5% H2SO4 solutions, respectively. In fact, the determined value range of the resistivity is in a good agreement with the one found in literature for the aluminium oxide, 85% Al2O3 (5×1010 Ω cm in air at temperature 30 °C), 96% Al2O3 (1×1014  Ω cm in air at temperature 30 °C), and 99.7% Al2O3 (>1×1014 Ω cm in air at temperature 30 °C).  相似文献   

11.
In this work titanium nitride (TiN) coatings were deposited on NiTi surgical alloy by arc ion plating (AIP). The open circuit testing and electrochemical impedance spectroscopy (EIS) have been employed to study the corrosion performance of the TiN coated samples in Troyde’s simulated body fluid. It was found that the TiN coating showed a good corrosion resistance at the beginning of long-term immersion; with the increase of immersion time, however, the corrosion resistance of the coating deteriorated after nearly 24 h of immersion; moreover, the large areas of the coating had fallen off the substrate after 30 days of immersion.  相似文献   

12.
Because of its biocompatibility, superelasticity and shape memory characteristics, NiTi alloys have been gaining immense interest in the medical field. However, there is still concern on the corrosion resistance of this alloy if it is going to be implanted in the human body for a long time. Titanium is not toxic but nickel is carcinogenic and is implicated in various reactions including allergic response and degeneration of muscle tissue. Debris from wear and the subsequent release of Ni+ ions due to corrosion in the body system are fatal issues for long-term application of this alloy in the human body.This paper reports the corrosion and wear properties of laser surface modified NiTi using Mo and ZrO2 as surface alloying elements, respectively. The modified layers which are free from microcracks and porosity, act as both physical barrier to nickel release and enhance the bulk properties, such as hardness, wear resistance, and corrosion resistance. The electrochemical performance of the surface modified alloy was studied in Hanks’ solution. Electrochemical impedance spectroscopy was measured.  相似文献   

13.
High corrosion resistance Cu/Ni-P coatings were electrodeposited on AZ91D magnesium alloy via suitable pretreatments, such as one-step acid pickling-activation, once zinc immersion and environment-friendly electroplated copper as the protective under-layer, which made Ni-P deposit on AZ91D Mg alloy in acid plating baths successfully. The pH value and current density for Ni-P electrodeposition were optimized to obtain high corrosion resistance. With increasing the phosphorous content of the Ni-P coatings, the deposits were found to gradually transform to amorphous structure and the corrosion resistance increased synchronously. The anticorrosion ability of AZ91D Mg alloy was greatly improved by the amorphous Ni-P deposits, which was investigated by potentiodynamic polarization curve and electrochemical impedance spectroscopy (EIS). The corrosion current density (Icorr) of the coated Mg alloy substrate is about two orders of magnitude less than that of the uncoated.  相似文献   

14.
Rough and porous Al2O3 coatings containing Ca and P were prepared on Ti–50.8 at.% Ni alloy by micro-arc oxidation (MAO) technique. The microstructure, elemental and phase composition of the coatings were investigated by scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS) and thin-film X-ray diffraction (TF-XRD). The thickness of the coatings was measured by eddy current coating thickness gauge. The corrosion resistance and the nickel release of the coated and uncoated samples were examined by potentiodynamic polarization tests and immersion tests in Hank’s solution, respectively. The results show that the coatings are mainly composed of γ-Al2O3 crystal phase. The Ni content of the coatings is about 3.5 at.%, which is greatly lower than that of NiTi substrate. With increasing treatment time, both thickness and roughness of the coatings increase. The corrosion resistance of the coated samples is about two orders of magnitude higher than that of the uncoated NiTi alloy. The concentration of Ni released from coated NiTi samples is much lower than that of uncoated NiTi sample. It can be reduced in the factor of one-seventh compared with the uncoated NiTi sample after 3 weeks immersion in Hank’s solution.  相似文献   

15.
Surface structure of NiTi shape memory alloy (SMA) was modified by advanced oxidation processes (AOP) in an ultraviolet (UV)/H2O2 photocatalytic system, and then systematically characterized with x-ray photoelectron spectroscopy (XPS). It is found that the AOP in UV/H2O2 photocatalytic system leads to formation of titanium oxides film on NiTi substrate. Depth profiles of O, Ni and Ti show such a film possesses a graded interface structure to NiTi substrate and there is no intermediate Ni-rich layer like that produced in conventional high temperature oxidation. Except TiO2 phase, some titanium suboxides (TiO, Ti2O3) may also exist in the titanium oxides film. Oxygen mainly presents in metal oxides and some chemisorbed water and OH are found in titanium oxides film. Ni nearly reaches zero on the upper surface and relatively depleted in the whole titanium oxides film. The work indicates the AOP in UV/H2O2 photocatalytic system is a promising way to favor the widespread application of biomedical NiTi SMA by improving its biocompatibility.  相似文献   

16.
Sulfide-stain resistance of La-passivated, unpassivated and Cr-passivated tinplate was measured using a cysteine tarnish test. Corrosion behavior of these tinplates was investigated using electrochemical impedance spectroscopy (EIS) measurement. The morphology, composition and thickness of lanthanum film were studied by atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and X-ray fluorescence spectrometry (XRF), respectively. La-passivation treatment remarkably enhances sulfide-stain resistance of tinplate, and sulfide-stain resistance of La-passivated tinplate is slightly higher than that of Cr-passivated tinplate. La-passivation treatment also significantly improves corrosion protection property of tinplate. In contact with 3.5% NaCl solution, corrosion resistance of La-passivated tinplate is close to that of Cr-passivated tinplate, and in contact with 0.1 M citric-citrate buffer solution, corrosion resistance of La-passivated tinplate is higher than that of Cr-passivated tinplate. Lanthanum film is composed of spherical particles about 50-1000 nm in diameter, while most part of tinplate's surface is covered with the small particles about 50-200 nm. The film mainly consists of lanthanum and oxygen, which mainly exist as La2O3 and its hydrates such as La(OH)3 and LaOOH. The amount of lanthanum in the film is about 0.0409 g/m2.  相似文献   

17.
Potentiostatically anodized oxide films on the surface of commercial pure titanium (cp-Ti) formed in sulfuric (0.5 M H2SO4) and in phosphoric (1.4 M H3PO4) acid solutions under variables anodizing voltages were investigated and compared with the native oxide film. Potentiodynamic polarization and electrochemical impedance spectroscopy, EIS, were used to predicate the different in corrosion behavior of the oxide film samples. Scanning electron microscope, SEM, and electron diffraction X-ray analysis, EDX, were used to investigate the difference in the morphology between different types of oxide films. The electrochemical characteristics were examined in phosphate saline buffer solution, PSB (pH 7.4) at 25 °C. Results have been shown that the nature of the native oxide film is thin and amorphous, while the process of anodization of Ti in both acid solutions plays an important role in changing the properties of passive oxide films. Significant increase in the corrosion resistance of the anodized surface film was recorded after 3 h of electrode immersion in PSB. On the other side, the coverage (θ) of film formed on cp-Ti was differed by changing the anodized acid solution. Impedance results showed that both the native film and anodized film formed on cp-Ti consist of two layers. The resistance of the anodized film has reached to the highest value by anodization of cp-Ti in H3PO4 and the inner layer in the anodized film formed in both acid solutions is also porous.  相似文献   

18.
Bioactive glasses in the system SiO2-CaO-Na2O-P2O5 were synthesized pure and doped with magnesium or zinc by melt-derived method. The bioactivity was studied during in vitro assays: the ability of hydroxycarbonate apatite (HCA) layer to form on the glass surface was examined after contact with simulated body fluid (SBF). The X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) studies were performed before and after immersion in vitro assays. The SBF solutions were also analyzed using inductively coupled plasma-optical emission spectroscopy (ICP-OES).Introduction of magnesium and zinc as trace element induces several modifications on the observed phenomena at the glass surface and in SBF solution after immersion of the samples. The chemical durability of the glasses, the formation of the silica-rich layer and the crystallization of the HCA layer were affected, but not present the same modifications as the introduced doping element.  相似文献   

19.
Optical shearography and electrochemical impedance spectroscopy (EIS) were used for the first time to measure the surface resistivity/conductivity of different organic-thin films. Different organic coatings i.e., ACE Premium-gray, white, and beige Enamels (spray coatings), on a metallic alloy, i.e., a carbon steel, were investigated at a temperature range between 20–60 °C. The investigation focused on determining the in-plane displacement of the coatings with respect to the applied temperature range by optical shearography. Then, the AC impedance (resistance) of the same coated samples was determined by the technique of EIS in 3.5% NaCl solution at room temperature. In addition, a mathematical model was developed in order to obtain a proportionality constant (surface resistivity = ρ or conductivity = 1/ρ) between the determined AC impedance and the in-plane displacement. The obtained values of ρ of all investigated coatings, 0:25 × 108–0:27 × 1010 Ωcm was found in the insulator range.  相似文献   

20.
Composites consisting of vanadium oxide nanotubes (VOx-NTs) and polypyrrole (PPy) were synthesized by a two-steps method. VOx-NTs were firstly prepared by a combined sol–gel reaction and hydrothermal treatment procedure, in which V 2O5 powder and H2O2 were used as raw materials and hexadecylamine as a structure-directing template. Then VOx-NTs/PPy composites were fabricated by a cationic exchange reaction between hexadecylamine and polypyrrole. The structure and morphology of the samples were investigated by SEM, TEM, XRD and FTIR techniques. The results confirmed that the template molecules were successfully substituted by the conducting polymers PPy without destroying the previous tubular structure. Electrochemical impedance spectroscopy (EIS) measurements were performed to evaluate the electrochemical kinetics of the samples. The results indicated that VOx-NTs/PPy composites had a lower charge transfer resistance and a faster lithium-ion diffusion speed than those of VOx-NTs, and the enhanced electrochemical kinetics could be attributed to the excellent electronic conductivity of polypyrrole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号