首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Barium ferrite thin films have been prepared by radio frequency magnetron sputtering on a sapphire (0 0 1) substrate at substrate temperature of 500 °C and 650 °C, respectively. The films were further annealed in air at 1000 °C for 5 h. X-ray diffraction shows that the films at the lower substrate temperatures have a good epitaxial relation with respect to the substrate, while the samples under the higher substrate temperatures have (1 0 9) planes parallel to the substrate. The remanence ratio decreases from 0.82 to 0.47 when the substrate temperature is increased. We attribute the variation of the growth direction to the enhanced vertical mobility of the deposited atoms when the substrate temperature is increased.  相似文献   

2.
The thermal stability of SiGe films on an ultra thin Ge buffer layer on Si fabricated at low temperature has been studied. The microstructure and morphology of the samples were investigated by high-resolution X-ray diffraction, Raman spectra and atomic force microscopy, and using a diluted Secco etchant to reveal dislocation content. After thermal annealing processing, it is observed that undulated surface, threading dislocations (TDs) and stacking faults (SFs) appeared at the strained SiGe layer, which developed from the propagation of a misfit dislocation (MD) during thermal annealing, and no SFs but only TDs formed in strain-relaxed sample. And it is found that the SiGe films on the Ge layer grown at 300 °C has crosshatch-free surface and is more stable than others, with a root mean square surface roughness of less than 2 nm and the threading dislocation densities as low as ∼105 cm−2. The results show that the thermal stability of the SiGe films is associated with the Ge buffer layer, the relaxation extent and morphology of the SiGe layer.  相似文献   

3.
We have investigated variations in molecularly thin rotaxane films deposited by solvent evaporation, using atomic force microscopy (AFM). Small changes in rotaxane structure result in significant differences in film morphology. The addition of exo-pyridyl moietes to the rotaxane macrocycle results in uniform domains having orientations corresponding to the underlying substrate lattice, while a larger, less symmetric molecule results in a greater lattice mismatch and smaller domain sizes. We have measured differences in film heights both as a function of the solvent of deposition and as a function of surface coverage of rotaxanes. Based on these observations we describe how the use of solvents with higher hydrogen-bond basicity results in films which are more likely to favour sub-molecular motion.  相似文献   

4.
Geometric and electronic properties of ordered copper phthalocyanine (CuPc) thin films grown on hydrogen- and antimony-passivated Si(1 1 1) surfaces have been studied using near edge X-ray absorption fine structure (NEXAFS) and photoemission spectroscopy. The H- and Sb-passivations of vicinal Si surfaces resulted in different molecular orientations in thick films, namely upright and near lying molecules, respectively. In the absence of the vicinality, the molecules on the Sb-passivated surface changed towards upright orientation. The work function of the films was monitored during the growth and correlated with the molecular orientation.  相似文献   

5.
Transparent zinc oxide (ZnO) thin films with a thickness from 10 to 200 nm were prepared by the PLD technique onto silicon and Corning glass substrates at 350 °C, using an Excimer Laser XeCl (308 nm). Surface investigations carried out by atomic force microscopy (AFM) and X-ray diffraction (XRD) revealed a strong influence of thickness on film surface topography. Film roughness (RMS), grain shape and dimensions correlate with film thickness. For the 200 nm thick film, the RMS shows a maximum (13.9 nm) due to the presence of hexagonal shaped nanorods on the surface. XRD measurements proved that the films grown by PLD are c-axis textured. It was demonstrated that the gas sensing characteristics of ZnO films are strongly influenced and may be enhanced significantly by the control of film deposition parameters and surface characteristics, i.e. thickness and RMS, grain shape and dimension.  相似文献   

6.
In the last few years, intensive research activity has been focused on the development of suitable synthesis methods for high-permittivity materials, used for the realization of next-generation microdevices able to fulfil the previsions of the Technology Roadmap of Semiconductors. The use of high-permittivity materials can overcome the difficulties concerning the production of SiO2-based ultra-thin dielectrics, such as the generation of pinholes and the non-uniformity of the film, which may result in a malfunction in high-density systems. Recently, zirconium titanate thin films were discovered to have very interesting dielectric properties, which suggests a use for them in microwave integrated systems, such as receivers or DRAMs, since they are monophasic, have little dissipation and show a good thermal stability and a high value for the dielectric constant, independent of frequency in the range from kilohertz to a few gigahertz. Real application is possible only in strict connection with the development of a suitable preparation method which allows production with controlled and reproducible characteristics. In this work, the synthesis and characterization of ZrxTi1-xO4 (ZT) thin films grown via MO-CVD is described, studying the influence of growth parameters on their structural, chemical and physical properties. Received: 17 June 2002 / Accepted: 24 June 2002 / Published online: 4 November 2002 RID="*" ID="*"Corresponding author. Fax: +39-06/9067-2445, E-mail: Pad@mlib.cnr.it  相似文献   

7.
Silver selenide thin films were grown on silicon substrates by the solid-state reaction of sequentially deposited Se and Ag films of suitable thickness. Transmission electron microscopy and particle-induced X-ray emission studies of the as-deposited films showed the formation of single phase polycrystalline silver selenide from the reaction of Ag and Se films. Atomic force microscopy images of the as-deposited and films annealed at different temperatures in argon showed the film morphology to evolve into an agglomerated state with annealing temperature. The results indicate that when annealed above 473 K, silver selenide films on silicon become unstable and agglomerate through holes generated at grain boundaries.  相似文献   

8.
In this work, ZnO thin films were prepared by sol-gel method and the effect of aging time of ZnO sol on the structural and optical properties of the films was studied. The structural characteristics of the samples were analyzed by an atomic force microscope and an X-ray diffractometer. The optical properties were studied by a UV-vis spectrophotometer and a fluorophotometer. The results show that the ZnO thin film prepared by the as-synthesized ZnO sol had relatively poor crystalline quality, low optical transmittance in the visible range and relatively weak ultraviolet emission performance. After the as-synthesized ZnO sol was aged for 24 h, the degree of the preferred crystal orientation along the c-axis of the ZnO thin film prepared by this aged sol was improved. At the same time, this film had a very smooth surface with uniform grains and both its visible range transmittance and ultraviolet emission intensity were obviously increased. These results suggest that appropriate aging of ZnO sol is very important for the improvement of structural and optical quality of ZnO thin films derived from sol-gel method.  相似文献   

9.
In this study, the electron beam evaporation method is used to generate an indium tin oxide (ITO) thin film on a glass substrate at room temperature. The surface characteristics of this ITO thin film are then investigated by means of an AFM (atomic force microscopy) method. The influence of postgrowth thermal annealing on the microstructure and surface morphology of ITO thin films are also examined. The results demonstrate that the film annealed at higher annealing temperature (300 °C) has higher surface roughness, which is due to the aggregation of the native grains into larger clusters upon annealing. The fractal analysis reveals that the value of fractal dimension Df falls within the range 2.16-2.20 depending upon the annealing temperatures and is calculated by the height-height correlation function.  相似文献   

10.
The surface and interface morphology and magnetization characteristics of Co70Fe30 thin films deposited on bare glass and p-Si/SiO2 substrates and on conjugated polymer poly(3-hexylthiophene-2,5-diyl) (P3HT) thin films on such substrates have been studied by atomic force microscopy and magneto-optic Kerr effect. It was found that the average absolute magnitude of the coercive field of Co70Fe30 correlates with the roughness of the underlayer prior to Co70Fe30 deposition. P3HT deposited on p-Si/SiO2 substrates possesses an increased surface roughness as compared to the p-Si/SiO2 surface, but displays a decreased surface roughness as compared to the one of a bare glass substrate.  相似文献   

11.
Zinc oxide films of 40 nm thickness have been deposited on glass substrates by pulsed laser deposition using an excimer XeCl laser (308 nm) at different substrate temperatures ranging from room temperature to 650 °C. Surface investigations carried out by using atomic force microscopy have shown a strong influence of temperature on the films surface topography. UV-VIS transmittance measurements have shown that our ZnO films are highly transparent in the visible wavelength region, having an average transmittance of ∼90%. The optical band gap of the films was found to be 3.26 eV, which is lower than the theoretical value of 3.37 eV. Besides the normal absorption edge related to the transition between the valence and the conduction band, an additional absorption band was also recorded in the wavelength region around 364 nm (∼3.4 eV). This additional absorption band may be due to excitonic, impurity, and/or quantum size effects. Photoreduction/oxidation in ozone of the ZnO films lead to larger conductivity changes for higher deposition temperature. In conclusion, the ozone sensing characteristics as well as the optical properties of the ZnO thin films deposited by pulsed laser deposition are strongly influenced by the substrate temperature during growth. The sensitivity of the films towards ozone might be enhanced significantly by the control of the films deposition parameters and surface characteristics.  相似文献   

12.
Room temperature chemical synthesis of PbSe thin films was carried out from aqueous ammoniacal solution using Pb(CH3COO)2 as Pb2+ and Na2SeSO3 as Se2− ion sources. The films were characterized by a various techniques including, X-ray diffraction (XRD), energy dispersive X-ray analysis (EDAX), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HR-TEM), selected area electron diffraction (SAED), Fast Fourier transform (FFT) and UV-vis-NIR techniques. The study revealed that the PbSe thin film consists of preferentially oriented nanocubes with energy band gap of 0.5 eV.  相似文献   

13.
We investigated the morphological, structural and electronic properties of Pentacene thin films grown by vacuum thermal evaporation on different inert substrates at room temperature. The results of our AFM and STM analysis give an interplanar spacing of 1.54 nm corresponding to the (0 0 1) distance of the so-called “thin film phase”. The STS measurements show an HOMO-LUMO gap of 2.2 eV.  相似文献   

14.
Al, Au, Ti/Al and Ti/Au contacts were prepared on n-GaN and annealed up to 900 °C. The structure, phase and morphology were studied by cross-sectional transmission and scanning electron microscopy as well as by X-ray diffraction (XRD), the electrical behaviour by current-voltage measurements. It was obtained that annealing resulted in interdiffusion, lateral diffusion along the surface, alloying and bowling up of the metal layers. The current-voltage characteristics of as-deposited Al and Ti/Al contacts were linear, while the Au and Ti/Au contacts exhibited rectifying behaviour. Except the Ti/Au contact which became linear, the contacts degraded during heat treatment at 900 °C. The surface of Au and Ti/Au contacts annealed at 900 °C have shown fractal-like structures revealed by scanning electron microscopy. Transmission electron microscopy and XRD investigations of the Ti/Au contact revealed that Au diffused into the n-GaN layer at 900 °C. X-ray diffraction examinations showed, that new Ti2N, Au2Ga and Ga3Ti2 interface phases formed in Ti/Au contact at 900 °C, new Ti2N phase formed in Ti/Al contact at 700 and 900 °C, as well as new AlN interface phase developed in Ti/Al contact at 900 °C.  相似文献   

15.
Poly(zinc 1,6-hexanedithiolate) thin film, a precursor to prepare ZnS thin film, was self-assembled on a quartz substrate. The UV-vis spectra monitored the annealing process of the poly(zinc 1,6-hexanedithiolate) film, which revealed that the ZnS thin film began to form at approximately 515 K. The result of XRD confirmed the crystallinity of ZnS. With increase of annealing temperature, a red shift of the emission spectra was observed.  相似文献   

16.
The general equation Tove = L cos  θ ln(Rexp/R0 + 1) for the thickness measurement of thin oxide films by X-ray photoelectron spectroscopy (XPS) was applied to a HfO2/SiO2/Si(1 0 0) as a thin hetero-oxide film system with an interfacial oxide layer. The contribution of the thick interfacial SiO2 layer to the thickness of the HfO2 overlayer was counterbalanced by multiplying the ratio between the intensity of Si4+ from a thick SiO2 film and that of Si0 from a Si(1 0 0) substrate to the intensity of Si4+ from the HfO2/SiO2/Si(1 0 0) film. With this approximation, the thickness levels of the HfO2 overlayers showed a small standard deviation of 0.03 nm in a series of HfO2 (2 nm)/SiO2 (2-6 nm)/Si(1 0 0) films. Mutual calibration with XPS and transmission electron microscopy (TEM) was used to verify the thickness of HfO2 overlayers in a series of HfO2 (1-4 nm)/SiO2 (3 nm)/Si(1 0 0) films. From the linear relation between the thickness values derived from XPS and TEM, the effective attenuation length of the photoelectrons and the thickness of the HfO2 overlayer could be determined.  相似文献   

17.
In this paper, we report on the preparation of lead zirconate films for the first time using atomic layer deposition in an attempt to investigate some of the film properties and also to evaluate possible use of the precursor combination to prepare more complex lead titanate zirconate. In the depositions tetraphenyl lead (Ph4Pb) was used as the lead and zirconium 2,2,6,6-tetramethyl-3,5-heptadionato (Zr(thd)4) as the zirconium precursor, while ozone was used as the oxygen source. Film growth, stoichiometry and quality were studied using different pulsing ratios at deposition temperatures of 275 and 300 °C. According to X-ray diffraction, the crystalline perovskite phase was observed when films deposited on SrTiO3(1 0 0) were annealed at 600 °C. Surface roughness was reduced for lead deficient films as well as in annealed samples.  相似文献   

18.
GeTi thin film has been found to have the reversible resistance switching property in our previous work. In this paper, the microstructure of this material with a given composition was investigated. The film was synthesized by magnetron sputtering and treated by the rapid temperature process. The results indicate a coexist status of amorphous and polycrystalline states in the as-deposited GeTi film, and the grains in the film are extremely fine. Furthermore, not until the film annealed at 600 °C, can the polycrystalline state be detected by X-ray diffraction. Based on the morphological analysis, the sputtered GeTi has the column growth tendency, and the column structure vanishes with the temperature increasing. The microstructure and thermal property analysis indicate that GeTi does not undergo evident phase change process during the annealing process, which makes the switching mechanism of GeTi different from that of chalcogenide memory material, the most widely used phase change memory material.  相似文献   

19.
Polycrystalline bulk materials of Bi93Sb7 Bi88Sb12, Bi85Sb15 and Bi80Sb20 were synthesized by melt-quench technique starting from the stoichiometric mixture of constituent elements. The phase purity and compositional uniformity of bulk materials were investigated using powder X-ray diffraction (XRD) and proton induced X-ray emission (PIXE) experiments. The single phase formation and the compositional analysis of thin films were confirmed by transmission electron microscopy (TEM) and Rutherford backscattering spectroscopy (RBS). X-ray diffraction studies confirmed the phase homogeneity of the materials. Atomic concentration ratio of constituent elements (Bi and Sb) determined by PIXE and RBS revealed that near-stoichiometric composition is nearly the same in the bulk as well as in thin film forms.  相似文献   

20.
Nickel films of different thickness ranging from 15 nm to 350 nm were deposited on glass substrates, at different substrate temperatures (313-600 K) under UHV condition. The nano-structure of the films was obtained, using X-ray diffraction (XRD) and atomic force microscopy (AFM). The nano-strain in these films was obtained using the Warren-Averbach method. Their optical properties were measured by spectrophotometry in the spectral range of 190-2500 nm. Kramers-Kronig method was used for the analysis of the reflectivity curves. The absorption peaks of Ni thin films at ∼1.4 eV (transition between the bands near W and K symmetry points) and ∼5.0 eV (transition from L2 to L1 upper) are observed, with an additional bump at about 2 eV. The over-layer thickness was calculated to be less than 3.0 nm, using the Transfer Matrix method. The changes in optical data are related to different phenomena, such as different crystallographic orientations of the grains in these polycrystalline films (film texture), nano-strain, and film surface roughness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号