首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Potentiostatically anodized oxide films on the surface of commercial pure titanium (cp-Ti) formed in sulfuric (0.5 M H2SO4) and in phosphoric (1.4 M H3PO4) acid solutions under variables anodizing voltages were investigated and compared with the native oxide film. Potentiodynamic polarization and electrochemical impedance spectroscopy, EIS, were used to predicate the different in corrosion behavior of the oxide film samples. Scanning electron microscope, SEM, and electron diffraction X-ray analysis, EDX, were used to investigate the difference in the morphology between different types of oxide films. The electrochemical characteristics were examined in phosphate saline buffer solution, PSB (pH 7.4) at 25 °C. Results have been shown that the nature of the native oxide film is thin and amorphous, while the process of anodization of Ti in both acid solutions plays an important role in changing the properties of passive oxide films. Significant increase in the corrosion resistance of the anodized surface film was recorded after 3 h of electrode immersion in PSB. On the other side, the coverage (θ) of film formed on cp-Ti was differed by changing the anodized acid solution. Impedance results showed that both the native film and anodized film formed on cp-Ti consist of two layers. The resistance of the anodized film has reached to the highest value by anodization of cp-Ti in H3PO4 and the inner layer in the anodized film formed in both acid solutions is also porous.  相似文献   

2.
In the present study, porous Nb-Si alloy films with isolated nano-column morphology have been successfully developed by oblique angle magnetron sputtering on to aluminum substrate with concave cell structure. The deposited films are amorphous with the 15 at% silicon supersaturated into niobium. The porous Nb-15 at% Si films, as well as niobium films with similar morphology, are anodized at several voltages up to 50 V in 0.1 mol dm−3 ammonium pentaborate electrolyte. Due to the presence of sufficient gaps between neighboring columns, the gaps are not filled with anodic oxide, despite the large Pilling-Bedworth ratio (for instance, 2.6 for Nb/Nb2O5) and hence, a linear correlation between the reciprocal of capacitance and formation voltage is obtained for the Nb-15 at% Si. From the comparison with the anodic films formed on porous niobium films, it has been found that silicon addition improves the thermal stability of anodic niobium oxide; the change in capacitance and increase in leakage current become small for the Nb-Si. The findings indicate the potential of oblique angle deposition to tailor porous non-equilibrium niobium alloy films for high performance niobium-base capacitor.  相似文献   

3.
Tungsten trioxide and titanium dioxide thin films were synthesised by pulsed laser deposition. We used for irradiations of oxide targets an UV KrF* (λ = 248 nm, τFWHM ≅ 20 ns, ν = 2 Hz) excimer laser source, at 2 J/cm2 incident fluence value. The experiments were performed in low oxygen pressure. The (0 0 1) SiO2 substrates were heated during the thin film deposition process at temperature values within the 300-500 °C range. The structure and crystalline status of the obtained oxide thin films were investigated by high resolution transmission electron microscopy. Our analyses show that the films are composed by nanoparticles with average diameters from a few to a few tens of nm. Moreover, the films deposited at substrate temperatures higher than 300 °C are crystalline. The tungsten trioxide films consist of a mixture of triclinic and monoclinic phases, while the titanium dioxide films structure corresponds to the tetragonal anatase phase. The oxide films average transmittance in the visible-infrared spectral range is higher than 80%, which makes them suitable for sensor applications.  相似文献   

4.
The anodization of ZK60 magnesium alloy in an alkaline electrolyte of 100 g/l NaOH + 20 g/l Na2B4O7·10H2O + 50 g/l C6H5Na3O7·2H2O + 60g/l Na2SiO3·9H2O was studied in this paper. The corrosion resistance of the anodic films was studied by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization techniques and the microstructure and composition of films were examined by SEM and XRD. The influence of anodizing time was studied and the results show that the anodizing time of 60 min is suitable for acquiring films with good corrosion resistance. The influence of current density on the corrosion resistance of anodizing films was also studied and the results show that the film anodized at 20 mA/cm2 has the optimum corrosion resistance. The film formed by anodizing in the alkaline solution with optimized parameters show superior corrosion resistance than that formed by the traditional HAE process. The XRD pattern shows that the components of the anodized film consist of MgO and Mg2SiO4.  相似文献   

5.
Z. Xia  H. Nanjo  T. Aizawa  M. Fujimura 《Surface science》2007,601(22):5133-5141
The as-deposited titanium film on silicon wafer was electrochemically treated in potential sweep and potential step modes in 0.1 M H2SO4 solution at 30 °C. Under the anodization conditions of potential sweep and properly modulated cyclic voltammetry (CV), nanoscale grains, step-terrace structure and atomic images were clearly observed on the surface of anodic oxide film on titanium. Under potential step conditions, if the anodization time was short (1 s), no grains could be found on the anodic oxide film surface, even though the potential was high up to 9000 mV. Moreover, whatever potential sweep or potential step mode was performed, sufficient time (low sweep rate means a prolonged anodization time) was needed for the formation of nanoscale grains, atomically flat surface and step-terrace structure on the anodized titanium film.  相似文献   

6.
Recent progress in ultrafine-grained/nano-grained (UFG/NG) titanium permits a consideration for TiO2 films deposited on nano-grained titanium for antithrombogenic application such as artificial valves and stents. For this paper, the microstructure, interface bonding, surface energy, and blood compatibility features of TiO2 films deposited by direct current magnetron reactive sputtering technology on NG titanium and coarse-grained (CG) titanium were investigated. The results show that the nanocrystallization of titanium substrate has a significant influence on TiO2 films. At the same deposition parameters, the content of rutile phase of TiO2 film was increased from 47% (on the CG titanium substrate) to 72% (on the NG titanium substrate); the adhesion of TiO2 film was improved from 5.8 N to 17 N; the surface energy was reduced from 6.37 dyn/cm to 3.01 dyn/cm; the clotting time was improved from 18 min to 28 min; the platelets accumulation and pseudopodium of adherent platelets on TiO2 film on NG titanium were considerably reduced compared to that on CG titanium. The present results demonstrate the possibility of improving the blood compatibility of TiO2 film through the approach of substrate nanocrystallization. Also it may provide an attractive idea to prepare stents with biological coatings of more outstanding blood compatibility and interface bonding.  相似文献   

7.
For electrolytic capacitor application of the single-phase Ti alloys containing supersaturated silicon, which form anodic oxide films with superior dielectric properties, porous Ti-7 at% Si columnar films, as well as Ti columnar films, have been prepared by oblique angle magnetron sputtering on to aluminum substrate with a concave cell structure to enhance the surface area and hence capacitance. The deposited films of both Ti and Ti-7 at% Si have isolated columnar morphology with each column revealing nanogranular texture. The distances between columns are ∼500 nm, corresponding to the cell size of the textured substrate and the gaps between columns are 100-200 nm. When the porous Ti-7 at% Si film is anodized at a constant current density in ammonium pentaborate electrolyte, the growth of a uniform amorphous oxide film continues to ∼35 V, while it is limited to less than 6 V on the porous Ti film. The maximum voltage of the growth of uniform amorphous oxide films on the Ti-7 at% Si films is similar for both the flat and porous columnar films, suggesting little influence of surface roughness on the amorphous-to-crystalline transition of growing anodic oxide under the high electric field. Due to the suppression of crystallization to sufficiently high voltages, the anodic oxide films formed on the porous Ti-7 at% Si film shows markedly improved dielectric properties, in comparison with those on the porous Ti film.  相似文献   

8.
In order to improve the photocatalytic activity, N-doped titanium oxide (TiO2) films were obtained by thermal oxidation of TiN films, which were prepared on Ti substrates by ion beam assisted deposition (IBAD). The dominating rutile TiO2 phase was found in films after thermal oxidation. According to the results of X-ray photoelectron spectroscopy (XPS), the residual N atoms occupied O-atom sites in TiO2 lattice to form TiON bonds. UV-vis spectra revealed the N-doped TiO2 film had a red shift of absorption edge. The maximum red shift was assigned to the sample annealed at 750 °C, with an onset wavelength at 600 nm. The onset wavelength corresponded to the photon energy of 2.05 eV, which was nearly 1.0 eV below the band gap of pure rutile TiO2. The effect of nitrogen was responsible for the enhancement of photoactivity of N-doped TiO2 films in the range of visible light.  相似文献   

9.
Pure and Nb-doped titanium oxide thin films were grown on sapphire substrates by pulsed-laser deposition in vacuum (10−7 mbar). The PLD growth leads to titanium oxide thin films displaying a high oxygen deficiency (TiO1.5) compared with the stoichiometric TiO2 compound. The structural and electrical properties (phase, crystalline orientation, nature and concentration of charge carriers, etc.) of these titanium oxide films were studied by XRD measurements and Hall effect experiments, respectively. The undoped TiO1.5 phase displayed a p-type semiconductivity. Doping this titanium oxide phase with Nb5+ leads to an n-type behaviour as is generally observed for titanium oxide films with oxygen deficiency (TiOx with 1.7 < x < 2). Multilayer homojunctions were obtained by the stacking of TiO1.5 (p-type) and Nb-TiO1.5 (n-type) thin films deposited onto sapphire substrates. Each layer is 75 nm thick and the resulting heterostructure shows a good transparency in the visible range. Finally, the I-V curves obtained for such systems exhibit a rectifying response and demonstrate that it is possible to fabricate p-n homojunctions based only on transparent conductive oxide thin films and on a single chemical compound (TiOx).  相似文献   

10.
The deposition of titanium silicon oxide films on silicon using hexafluorotitanic acid and boric acid as sources is much enhanced by nitric acid incorporation. The deposition delay time is almost zero. The structure of the films is titanium silicon oxide examined by Fourier transform infrared spectrometer. By current-voltage measurement, the leakage current of the as-deposited film with a thickness of 458 Å is about 7.78×10-6 Å/cm2 at the electrical field of 1 MV/cm. By capacitance-voltage measurement, the effective oxide charge of the as-deposited film is 6.31×1010 cm-2. The static dielectric constant and refractive index are about 13 and 1.98, respectively. Compared with that without nitric acid incorporation, the lower effective oxide charge is from a sharp interface due to in-situ etching of nitric acid. The higher leakage current is from the higher deposition rate and the higher dielectric constant is from higher titanium content. PACS 77.84.-s  相似文献   

11.
Thin GaAs films were prepared by pulse plating from an aqueous solution containing 0.20 M GaCl3 and 0.15 M As2O3 at a pH of 2 and at room temperature. The current density was kept as 50 mA cm−2 the duty cycle was varied in the range 10-50%. The films were deposited on titanium, nickel and tin oxide coated glass substrates. Films exhibited polycrystalline nature with peaks corresponding to single phase GaAs. Optical absorption measurements indicated a direct band gap of 1.40 eV. Photoelectrochemical cells were made using the films as photoelectrodes and graphite as counter electrode in 1 M polysulphide electrolyte. At 60 mW cm−2 illumination, an open circuit voltage of 0.5 V and a short circuit current density of 5.0 mA cm−2 were observed for the films deposited at a duty cycle of 50%.  相似文献   

12.
Reflection high-energy electron diffraction (RHEED) operated at high pressure has been used to monitor the growth of thin films of titanium dioxide (TiO2) on (1 0 0) magnesium oxide (MgO) substrates by pulsed laser deposition (PLD). The deposition is performed with a synthetic rutile TiO2 target at low fluence. The topography and structure of the deposited layers are characterized using in situ high pressure RHEED and atomic force microscope (AFM). Based on these observations the growth mode of the films is discussed. The results will be compared to earlier results obtained for the growth of TiN films on (1 0 0) MgO.  相似文献   

13.
ZnO films with different morphologies were deposited on the ITO-coated glass substrate from zinc nitrate aqueous solution at 65 °C by a seed-layer assisted electrochemical deposition route. The seed layers were pre-deposited galvanostatically at different current densities (isl) ranging from −1.30 to −3.0 mA/cm2, and the subsequent ZnO films had been done using the potentiostatic technique at the cathode potential of −1.0 V. Densities of nucleation centers in the seed layers varied with increasing the current density, and the ZnO films on them showed variable morphologies and optical properties. The uniform and compact nanocrystalline ZnO film with (0 0 2) preferential orientation was obtained on seed layer that was deposited under the current density (isl) of −1.68 mA/cm2, which exhibited good optical performances.  相似文献   

14.
The effect of deposition temperature, relative humidity of carrier gas and UV-assistance on the growth of Erbium-doped aluminium oxide films has been studied. The films were prepared from aluminium acetylacetonate (Al(C5H7O2)3) and erbium (III) Tris(2,2,6,6-tetramethyl-3,5-heptanedionate) (Er(TMHD)3) by UV and aerosol-assisted metal-organic chemical vapour deposition, using air with controlled humidity as carrier gas. Amorphous transparent films were deposited between 350 and 460 °C. It was observed that UV assistance allows a large decrease down to 5 kJ/mol of the activation energy of the deposition reaction for deposition temperatures lower than 420 °C. More over, depositing under high air humidity induced higher deposition rate, lower level of organic contamination and higher film density. Under these conditions Er-doped aluminium oxide films with a refractive index value of 1.71 were obtained at 460 °C.  相似文献   

15.
The a-C:H and a-C:NX:H films were deposited onto silicon wafers using radio frequency (rf) plasma enhanced chemical vapor deposition (PECVD) and pulsed-dc glow discharge plasma CVD, respectively. Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) were used to characterize chemical nature and bond types of the films. The results demonstrated that the a-C:H film prepared by rf-CVD (rf C:H) has lower ID/IG ratio, indicating smaller sp2 cluster size in an amorphous carbon matrix. The nitrogen concentrations of 2.9 at.% and 7.9 at.% correspond to carbon nitride films prepared with rf and pulse power, respectively.Electrochemical corrosion performances of the carbon films were investigated by potentiodynamic polarization test. The electrolyte used in this work was a 0.89% NaCl solution. The corrosion test showed that the rf C:H film exhibited excellent anti-corrosion performance with a corrosion rate of 2 nA cm−2, while the carbon nitride films prepared by rf technique and pulse technique showed a corrosion rate of 6 nA cm−2 and 235 nA cm−2, respectively. It is reasonable to conclude that the smaller sp2 cluster size of rf C:H film restrained the electron transfer velocity and then avoids detriment from the exchange of electrons.  相似文献   

16.
The article reports on correlations between the process parameters of reactive pulsed dc magnetron sputtering, physical properties and the photocatalytic activity (PCA) of TiO2 films sputtered at substrate surface temperature Tsurf ≤ 180 °C. Films were deposited using a dual magnetron system equipped with Ti (Ø50 mm) targets in Ar + O2 atmosphere in oxide mode of sputtering. The TiO2 films with highly photoactive anatase phase were prepared without a post-deposition thermal annealing. The decomposition rate of the acid orange 7 (AO7) solution during the photoactivation of the TiO2 film with UV light was used for characterization of the film PCA. It was found that (i) the partial pressure of oxygen pO2 and the total sputtering gas pressure pT are the key deposition parameters influencing the TiO2 film phase composition that directly affects its PCA, (ii) the structure of sputtered TiO2 films varies along the growth direction from the film/substrate interface to the film surface, (iii) ∼500 nm thick anatase TiO2 films with high PCA were prepared and (iv) the structure of sputtered TiO2 films is not affected by the substrate surface temperature Tsurf when Tsurf < 180 °C. The interruption of the sputtering process and deposition in long (tens of minutes) pulses alternating with cooling pauses has no effect on the structure and the PCA of TiO2 films and results in a decrease of maximum value of Tsurf necessary for the creation of nanocrystalline nc-TiO2 film. It was demonstrated that crystalline TiO2 films with high PCA can be sputtered at Tsurf ≤ 130 °C. Based on obtained results a phase zone model of TiO2 films was developed.  相似文献   

17.
L. Shi 《Applied Surface Science》2007,253(7):3731-3735
As a potential gate dielectric material, the La2O3 doped SiO2 (LSO, the mole ratio is about 1:5) films were fabricated on n-Si (0 0 1) substrates by using pulsed laser deposition technique. By virtue of several measurements, the microstructure and electrical properties of the LSO films were characterized. The LSO films keep the amorphous state up to a high annealing temperature of 800 °C. From HRTEM and XPS results, these La atoms of the LSO films do not react with silicon substrate to form any La-compound at interfacial layer. However, these O atoms of the LSO films diffuse from the film toward the silicon substrate so as to form a SiO2 interfacial layer. The thickness of SiO2 layer is only about two atomic layers. A possible explanation for interfacial reaction has been proposed. The scanning electron microscope image shows the surface of the amorphous LSO film very flat. The LSO film shows a dielectric constant of 12.8 at 1 MHz. For the LSO film with thickness of 3 nm, a small equivalent oxide thickness of 1.2 nm is obtained. The leakage current density of the LSO film is 1.54 × 10−4 A/cm2 at a gate bias voltage of 1 V.  相似文献   

18.
The nanobaskets of SnO2 were grown on in-house fabricated anodized aluminum oxide pores of 80 nm diameter using plasma enhanced chemical vapor deposition at an RF power of 60 W. Hydrated stannic chloride was used as a precursor and O2 (20 sccm) as a reactant gas. The deposition was carried out from 350 to 500 °C at a pressure of 0.2 Torr for 15 min each. Deposition at 450 °C results in highly crystalline film with basket like (nanosized) structure. Further increase in the growth temperature (500 °C) results in the deterioration of the basket like structure and collapse of the alumina pores. The grown film is of tetragonal rutile structure grown along the [1 1 0] direction. The change in the film composition and bonded states with growth temperature was evident by the changes in the photoelectron peak intensities of the various constituents. In case of the film grown at 450 °C, Sn 3d5/2 is found built up of Sn4+ and O-Sn4+ and the peaks corresponding to Sn2+ and O-Sn2+ were not detected.  相似文献   

19.
Hydro-oxygenated amorphous titanium oxide (a-TiOx:OH) films were prepared by plasma-enhanced chemical vapor deposition (PECVD) using precursors of titanium tetraisopropoxide (TTIP) and oxygen. The influences of chemical states and crystal quality on the photocatalytic activity were systematically investigated in the as-deposited and post-annealed films. The degree of the photocatalytic activity was deeply correlated with the porosity related to the hydroxyl (OH) groups in the as-deposited amorphous film. The crystallized anatase structures was observed from the 200 °C-deposited a-TiOx:OH film after a post-annealing treatment at 400 °C. The photocatalytic activity related to the film with anatase structure was markedly superior to that of an amorphous film with porous structures. The larger the crystal size of the anatase structure, the higher the photocatalytic activity obtained. At elevated annealed temperatures, the inferior anatase structure due to the crystalline transformation led to a low photocatalytic activity. It was concluded that the photocatalytic activity of an amorphous TiOx film prepared using PECVD was determined by the porosity originating from the functional OH groups in the film, whereas the crystalline quality of anatase phase in the annealed poly-TiOx film was crucial to the photocatalytic activity.  相似文献   

20.
In this paper we study nanocrystalline zinc oxide thin films produced by oxidation of electrodeposited zinc nanolayers on a monocrystalline p-Si(1 1 1) substrate.The electrolyte used is ZnCl2, an aqueous solution of 4 × 10−2 mol/l concentration. Several deposits were made for various current densities, ranging from 13 mA/cm2 to 44 mA/cm2, flowing through the solution at room temperature. A parametric study enabled us to assess the effect of the current density on nucleation potential and time as well as zinc films structure. The grazing incidence X-ray diffraction (GIXD) revealed that both Zn and ZnO films are polycrystalline and nanometric. After 1-h oxidation of zinc films at 450 °C in the open air, the structural analyses showed that the obtained ZnO films remained polycrystalline with an average crystal size of about 47 nm and with (1 0 0), (0 0 2) and (1 0 1) as preferential crystallographic orientations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号