首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 624 毫秒
1.
Three kinds of comb-like amphiphilic copolymers based on styrene-maleic anhydride copolymer (SMA) backbone and long fatty alcohol grafts were synthesized by esterification of SMA with octanol, tetradecanol and octadecanol, respectively. SMA and the esters were used as surface modifiers to blend with high density polyethylene (HDPE). The surface composition of the binary blends has been determined by Attenuated Total Reflection Fourier Transform infra-red (ATR-FT-IR) spectroscopy. It was found that grafting of alcohols onto SMA can promote the enrichment of the modifiers on the surface of the blending film, and that the enrichment effect enhances when using shorter fatty alcohols. The data of contact angle measurements and surface tension of the blend film show that the addition of SMA esters to HDPE can improve the hydrophilicity of the HDPE surface.  相似文献   

2.
The effect of the disperse phase and the diffuse interface between phases on the tensile and impact strengths of polypropylene (PP)/poly(ethylene terephthalate) (PET) (75/20 by weight) blends compatibilized with maleic anhydride–grafted PP derivatives and on the tensile modulus of poly(vinyl chloride)/polystyrene (PVC/PS) nanoparticle blends compatibilized with polystyrene/poly(vinyl acetate) (PS/PVAc) block copolymers were investigated experimentally. The weight fraction of the diffuse interface between the PP and PET phases in the PP/PET blends was determined by modulated differential scanning calorimetry (MDSC). A correlation between the diffuse interface content and mechanical properties was found. With increasing diffuse interface weight fraction, the impact and tensile strengths of the PP/PET blends increased. There is a brittle-tough type transition in these PP/PET blends. With increasing diffuse interface content in the PVC/PS nanoparticle blends in which the particle size was fixed at about 100 nm, the tensile modulus also clearly increased.  相似文献   

3.
Phase structures of immiscible polypropylene (PP)/polystyrene (PS) blends with different volume proportions, PP90/PS10, PP80/PS20, PP70/PS30, PP60/PS40, PP50/PS50, PP40/PS60, PP30/PS70, PP20/PS80, PP10/PS90, were observed by means of scanning electronic microscopy (SEM). The zero shear viscosities of the blends were determined according to a modified Carreau model by fitting the curves of static shear rate sweeps of blends tested at 190°C in a Stress Tech Fluids Rheometer. The results showed that the compositional dependence of zero shear viscosity of PP/PS deviated greatly from linear or log‐linear additivity. When PS was dispersed in a PP continuous phase, the blends showed negative deviation, while for blends with PP dispersed in a PS matrix, positive deviation was generated. When different theoretical equations of Nielsen, Utracki, Taylor, Frankel‐Acrivos (FA), Choi‐Schowalter (CS), and Han‐King (HK) were used to fit the experimental data of zero shear viscosities of blends, none of them was suitable for PP/PS blends. These experimental phenomena may result from the complex phase structures of the blends and their response to shear conditions, which are discussed in detail and compared with the experimental analysis.  相似文献   

4.
Surface film properties of the homopolymers polystyrene (PS), poly(methyl methacrylate) (PMMA), poly(butyl methacrylate) (PBMA) and the copolymer poly(methyl methacrylate)-co-poly(butyl methacrylate) (PMMA-co-PBMA) and their blends with PS have been examined by atomic force microscopy (AFM) and contact angle measurements. The total and the Lifshitz-van der Waals, acid and base components of the surface free energy together with the work of adhesion and its components, the cohesive energy density and the solubility parameters of the homopolymer, copolymer and blend films were determined. Films of about 3 μm were considered. The results are discussed in terms of surface migration mechanisms based on surface free energy and solubilities of the polymers in the solvent, toluene in this paper. AFM imaging and contact angles revealed surface enrichment at the air polymer interface of PBMA for both the PS/PBMA blend and the copolymer PMMA-co-PBMA, whereas the PS/PMMA and PS/PMMA-co-PBMA blend film surfaces show island-like phase-separated structure of typical size 27.4-86.5 nm in diameter and 6.9-15.6 nm in height for PS/PMMA, while for PS/ PMMA-co-PBMA film surface the typical size is 49.6-153.3 nm in diameter and 1.6-14.2 nm in height.  相似文献   

5.
《Composite Interfaces》2013,20(6):439-453
Fourier—transform infrared (FT-IR) with digital subtraction method has been applied to investigate the molecular interactions of immiscible polystyrene (PS)/bisphenol A polycarbonate (PC) blends and miscible PS/tetra-methyl PC (TMPC) blends. The FT-IR results show that there are no interactions for PS/PC, and the miscibility of PS/TMPC blends is mainly due to the intermolecular interaction between the phenyl ring of PS and the carbonate group of TMPC. The phenyl ring band of PS is linearly shifted to higher wave number with increasing concentration of TMPC, and the bandwidth at half maximum intensity of the carbonyl band of TMPC is linearly decreased with increasing concentration of PS. The amplitude of the interactional bands is decreased with increasing temperature consistent with LCST behavior of the blend. The miscibility of PS/TMPC and immiscibility of PS/PC has also been discussed in terms of local free-volume, self-interactions, and intermolecular interactions based on the chemical structures of PC and TMPC. Furthermore, the immiscibility behavior for blends of methyl-substituted PS and TMPC, and blends of PS and halogen-substituted PC has been explained in terms of intra and intermolecular interactions caused by steric and/or induction effects.  相似文献   

6.
Abstract

The interphase boundary of incompatible polymer blends such as poly(methyl methacrylate) (PMMA)/natural rubber (NR) and polystyrene (PS)/NR, and of compatible blends such as PMMA/NR/epoxidized NR (ENR) and PS/NR/styrene–butadiene–styrene (SBS) block copolymer, where ENR and SBS were used as compatibilizers, was studied by means of microindentation hardness (H) and microscopy. Cast films of neat PMMA and PS, and blended films of PMMA/NR, PS/NR, PMMA/NR/ENR, and PS/NR/SBS were prepared by the solution method using a common solvent (toluene). Hardness values of 178 and 173 MPa were obtained on the surfaces of the neat PMMA and PS, respectively. After the inclusion of soft phases, the binary (incompatible) and the ternary (compatible) blend surfaces show markedly lower H‐values. Scanning electron and optical microscopy reveal a clear difference at the phase boundary of the surface of compatible (smooth boundary) and incompatible (sharp boundary) blends. The compatibilized blends were characterized by using microhardness measurements, as having the thinnest phase boundary (~30 µm), while incompatible blends were shown to present a boundary of about 60 µm. The hardness values indicate that the compatibilizer is smoothly distributed across the interface between the two blend components. Results highlight that the microindentation technique, in combination with microscopic observations, is a sensitive tool for studying the breadth and quality of the interphase boundary in non‐ or compatibilized polymer blends and other inhomogeneous materials.  相似文献   

7.
《Composite Interfaces》2013,20(8-9):783-799
The effect of molecular structure of styrene-butadiene (SB) block copolymers on their interfacial activity in low-density polyethylene/polystyrene (LDPE/PS) (4/1) blends was studied. It was found that addition of some SB copolymers, which are localized in brittle PS particles, leads to a decrease in the blend impact strength in spite of the fact that these SB improve the toughness of both the blend components. Comparison with our previous results showed that the distribution of SB copolymers between the interface and bulk phases and their supermolecular structure in LDPE/PS (4/1) blends strongly differs from those in LDPE/PS (1/4) blends.  相似文献   

8.
The thermodynamics and kinetics of phase separation in partially miscible blends of poly (vinyl methyl ether) (PVME) and two kinds of polystyrene (PS) with the same weight average molecular weight but different polydispersity were studied. The miscibility of PS/PVME with the monodisperse PS was better than that of PS/PVME with the polydisperse PS. Different morphology was observed for the two kinds of PS/PVME (10/90) blends during the nonisothermal phase separation process. The blend with monodisperse PS presented a co-continuous structure while the blend with polydisperse PS presented a viscoelastic phase separated network structure at a quench depth of 29°C. With increase of the heating rate, the increase of cloud point of PS/PVME (30/70) with polydisperse PS was smaller than that of PS/PVME (30/70) with monodisperse PS. During the isothermal phase separation of the critical composition (20/80) of PS/PVME with a quench depth of 30°C, it was found that the phase morphology of the two kinds of blends was nearly the same at the early stage of phase separation. However, as the dispersed phase, an approximately spherical droplet structure was observed in the blend with monodisperse PS at the late stage of phase separation, which did not appear in the blend with polydisperse PS.  相似文献   

9.
We have developed a time-of-flight detector system which improves the resolution of standard He+ forward recoil spectrometry (FRES) to better than 300 Å. The technique was used to determine the shape of the concentration profile at the surface of polymer blends of deuterated polystyrene (d-PS) and protonated polystyrene (PS). The results are discussed in terms of the predictions of mean field theories.  相似文献   

10.
《Composite Interfaces》2013,20(3):171-186
A comparative study of interfacial effects due to styrene-butadiene-based triblock copolymer (SEBS) addition and to corona treatment has been investigated for blends of polyethylene (PE) and polystyrene (PS). Blends of PS/PE covering a wide range of weight composition have been prepared in the molten state. Scanning electron microscopy demonstrated that moderate amounts of SEBS copolymer addition (2-5%) resulted in finer particle dispersion and in better interfacial adhesion between PE and PS phases. Tensile strength and elongation at break were also significantly improved. In the case of corona treatment of both polyethylene and polystyrene, the tensile strength of the blends increased while their elongation at break remained almost unchanged. The same trend was found when small amounts of corona-treated blend (5%) were added to the non-modified PS/PE blends. Rheological measurements revealed that corona treatment resulted in a decrease of dynamic shear viscosity of both PE and PS. From a view-point of morphological and mechanical properties, the triblock copolymer was found to be the more efficient modifier. Nevertheless, much higher tensile strengths, but lower elongations at break were obtained when the blends were modified by corona-treated SEBS copolymer. The results suggest that a combination of the two modification methods may be a promising route to enhance performance properties in the immiscible PS/PE system.  相似文献   

11.
The role of styrene‐ethylene/propylene (SEP) diblock copolymer in controlling morphology development of polypropylene/polystyrene (PP/PS) blends was studied by means of small angle laser scattering (SALS) and scanning electron microscopy (SEM). According to SALS, a certain amount of SEP was located at the phase boundary, forming a relatively thick transition layer penetrating into the homopolymers. The thickness of the transition layer was quantified in terms of Debye–Bueche light scattering theory. For PP/PS (1/99) and PP/PS (20/80) blends, the incorporation of SEP into PP/PS blends resulted in a decrease in domain size following an emulsification curve as well as a uniform size distribution, and consequently, a fine dispersion of PP domains in the PS matrix. However, for PP/PS (45/55) blends, the addition of SEP results in a nonmonotonous change in domain size. The morphology fluctuation of the fracture surfaces was analyzed using an integral constant Q based on Debye–Bueche light scattering theories. Variation of Q as a function of the concentration of SEP showed that, due to the penetrating transition layer, adhesion between phases was improved, making it possible for applied stress to transfer between phases and leading to a more uniform stress distribution when blends were broken; accordingly, a more complicated morphology fluctuation of the fracture surfaces appeared.  相似文献   

12.
A study on the composition of Na-implanted polystyrene has been made by Rutherford backscattering spectroscopy (RBS). Substrates used were polystyrene (PS) dishes. Na ion implantation was performed at an energy of 50 keV with does ranging from 5᎒15 to 1᎒17 ions/cm2. RBS was carried out with 1.5-MeV He+-ion beams and a fluence of 60 7C. The depth distribution of Na atoms showed a Gaussian distribution for the low dose. The profile is in a good agreement with a theoretical distribution calculated by a TRIM code. At the intermediate dose, the Na depth profile changed to a trapezoidal distribution. At the high dose, Na enrichment was found at the surface. Oxygen incorporation into PS is also observed. Na distribution behaviors in PS surface layer were discussed as a link to the O distribution.  相似文献   

13.
A simple synthetic route based on nanosphere lithography has been developed in order to design a large-scale nanoarray for specific control of protein anchoring. This technique based on two-dimensional (2D) colloidal crystals composed of polystyrene spheres allows the easy and inexpensive fabrication of large arrays (up to several centimeters) by reducing the cost. A silicon wafer coated with a thin adhesion layer of chromium (15 nm) and a layer of gold (50 nm) is used as a substrate. PS spheres are deposited on the gold surface using the floating-transferring technique. The PS spheres were then functionalized with PEG-biotin and the defects by self-assembly monolayer (SAM) PEG to prevent unspecific adsorption. Using epifluorescence microscopy, we show that after immersion of sample on target protein (avidin and anti-avidin) solution, the latter are specifically located on polystyrene spheres. Thus, these results are meaningful for exploration of devices based on a large-scale nanoarray of PS spheres and can be used for detection of target proteins or simply to pattern a surface with specific proteins.  相似文献   

14.
Polyphenylene ether (PPE)/glycol modified polyethylene terephthalate (PETG) blends with various compositions were fabricated via a melt blending method using a laboratory-scale twin-screw extruder. The fracture surface morphology of the PPE/ PETG blends was examined by scanning electron microscopy (SEM) and, based on its data, it was observed that PPE and PETG are immiscible. Thermal stability and mechanical properties of the blends were also examined via thermal gravimetric analysis and a universal testing machine (UTM), respectively. Rheological properties of the PPE/PETG blends were observed with both steady shear and dynamic tests using a rotational rheometer. The effect of poly(styrene-co-maleic anhydride) (SMA) as a compatibilizer on the PPE/PETG blends was additionally investigated. An increase in quantity of PPE in the PPE/PETG blends and the addition of SMA were observed to enhance their thermal and mechanical properties.  相似文献   

15.
The effect of surface polarity on the adsorption of bovine serum albumin (BSA) on polystyrene (PS), 7% polystyrene-co-maleic anhydride (7%PSMAn) and 50% polystyrene-co-maleic acid (50%PSMA), at pH 7.4, was investigated. Polystyrene represented the non-polar surface while 7%PSMAn and 50%PSMA represented a low and high acid content copolymer. The amount of the adsorbed BSA depended on the amount of the acid content in the copolymer. BSA formed a monolayer with a side-on orientation on the low polarity PS surface, a mixed side-on and end-on orientation on 7%PSMAn and a predominantly side-on orientation on 50%PSMA. The thickness of adsorbed BSA, measured with an atomic force microscope (AFM), varied from 3 nm to 5 nm for the side-on orientation and from 10 nm to 15 nm for the end-on orientation. The average area occupied per BSA molecule was consistent with the proposed orientation, and was 34.8 nm2, 27.8 nm2 and 18.0 nm2 for PS, 7%PSMAn and 50%PSMA, respectively. The adsorption showed a concentration dependency following the Freundlich isotherm, which indicated the interactions among adsorbed BSA molecules on the polymer surface. The adsorption took place as an island-like morphology and started to fuse into a patch-like morphology at higher concentrations before achieving a complete monolayer formation. A non-uniform surface coverage and defects were observed in all cases. It is recommended that for an effective blocking of PS, 7%PSMAn and 50%PSMA, the BSA concentration should be higher than 3 mg/mL.  相似文献   

16.
Thin films of polystyrene (PS)/poly (methyl methacrylate) (PMMA) blends with different end groups were investigated using ToF-SIMS and AFM. PS with -OH and -NH2 end groups were blended in toluene solvent with pure PMMA homopolymer, and PMMA having anhydride end group. The ToF-SIMS spectra of PS-OH/PMMA resembled that of pure PS-PMMA blends showing an increase of PMMA intensity after annealing. On the contrary, the PS-NH2 blended with PMMA showed an increase in PS intensity on the surface after annealing. The ToF-SIMS spectra were similar to that of a pure PS-PMMA di-block copolymer. These results indicate copolymer formation at the surface. The PS-NH2 with PMMA-anhydride blend spectra showed very slight changes in spectra before and after annealing and the AFM images revealed spinodal bi-continuous structures on the surface before and after annealing. The copolymer formation is found to occur in the as-cast film itself and not after thermal treatment.  相似文献   

17.
The morphological effects on mechanical properties of polystyrene/polyvinylchloride (PS/PVC) polymer blends were investigated through dynamic mechanical analyzer. Study reveals that the peaks of Tan δ curves of pure PVC and pure PS samples fall at temperatures 58.9 ± 0.2°C and 113.1 ± 0.1°C, respectively. Tan δ curves of 30, 50 and 70-wt% of PVC blends show two peaks indicating the immiscibility of PS/PVC blend. It has been observed that peak falling at lower temperature side shifts towards the higher temperature with the increase of PS concentration and the other one which falls at higher temperature side shifts towards lower temperature side with the increase of PVC concentration in PS/PVC blends. The variation in mechanical performance is attributed to the polymer domain interactions resulting from the different morphologies of various blend compositions.  相似文献   

18.
Ethylene‐α‐olefin copolymer (POE)/polystyrene (PS)/poly(styrene‐b‐ethylene‐co‐butylene‐b‐styrene) (SEBS) blends were prepared via melt blending in a co‐rotating twin‐screw extruder. The effects of SEBS copolymer on the morphology and rheological and mechanical properties of the blends were studied. Scanning electron microscopy (SEM) photos showed that the addition of SEBS copolymer resulted in finer dispersion of PS particles in the POE matrix and better interfacial adhesion between POE and PS compared with POE/PS blends, which exhibited a very coarse morphology due to the immiscibility between them. Interestingly, the tensile strength increased from 12.5 MPa for neat POE to 23.5 MPa for the POE/PS/SEBS (60/10/30) blend, whereas the tensile strengths of POE/PS (85.7/14.3) blend and POE/SEBS (66.7/33.3) blend were only 10.5 and 16.5 MPa, respectively. This indicates that both SEBS copolymer and PS have a synergistic reinforcing effect on POE. Dynamic mechanical thermal analysis (DMTA) and dynamic rheological property measurement also revealed that there existed some interactions between POE and SEBS as well as between SEBS and PS. DMTA results also showed that the storage modulus of POE increased when PS and SEBS were incorporated, especially at high temperature, which means that the service temperature of POE was improved.  相似文献   

19.
20.
The thermal behaviors of polystyrene (PS)/triphenylmethyl chloride (TPCM) blends with different polymer molecular weights were investigated through differential scanning colorimetry (DSC). It was shown that when solvent content was lower than a critical composition, there was only a single amorphous phase in the blends. With increasing polymer concentration, both Tg and Tm could be detected in DSC curves, revealing that the blends were heterogeneous. The constant Tg of the amorphous phase indicated that the composition of the amorphous phase in the blends did not depend on the solvent concentration, and the Tm depression with decreasing PS content showed the decrease of TPCM crystallite size owing to geometric constraint by the polymer chains. On the basis of the Flory–Huggins theory, the interaction parameters between PS and TPCM in the blends were obtained; they showed that the PS/TPCM blends were not thermodynamically miscible with low polymer content. The Hoffmann-Weeks equation indicated that the crystals corresponding to the lower melting point were unstable. The unstable crystals in the blends were located in the interfacial regions between the crystalline solvent molecules and the amorphous phase. The heat capacity of the blends confirmed the geometric constraint on the crystallization of TPCM in the blends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号