首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A phenomenological kinetic model is proposed for describing the production of a thin film containing two components, A and B, by chemical and physical vapor deposition. The film was created by the “site-to-site” deposition of components A and B. The equations for the densities of components A and B in the surface layers were formed, and analytical and numerical solutions were obtained. The model includes the probabilities of different elementary processes for the interaction of gas phase components (molecules, radicals, atoms and ions) with those of A and B on the film surface. The deposition and erosion rates, the surface and volume densities of components A and B and the relative volume of micro-cavities inside the film were calculated as a function of the probabilities for the elementary processes of gas (plasma)-surface interactions. The experimental characteristics of a-Si: H thin films prepared by SiH4 plasma deposition and those of carbon nitride thin films deposited from r.f. — magnetron sputtering and ion beam-assisted processes are compared with model calculations.  相似文献   

2.
A multistage numerical model comprising the plasma kinetics and surface deposition sub-models is developed to study the influence of process parameters, namely, total gas pressure and input plasma power on the plasma chemistry and growth characteristics of vertically oriented graphene sheets (VOGS) grown in the plasma-enhanced chemical vapour deposition system containing the Ar + H2 + C2H2 reactive gas mixture. The spectral and spatial distributions of temperature and number densities, respectively, of plasma species, that is, charged and neutral species in the plasma reactor, are examined using inductively coupled plasma module of COMSOL Multiphysics 5.2 modelling suite. The numerical data from the computational plasma model are fed as the input parameters for the surface deposition model, and from the simulation results, it is found that there is a significant drop in the densities of various plasma species as one goes from the bulk plasma region to the substrate surface. The significant loss of the energetic electrons is observed in the plasma region at high pressure (for constant input power) and low input power (for constant gas pressure). At low pressure, the carbon species generate at higher rates on the catalyst nanoislands surface, thus enhancing the growth and surface density of VOGS. However, it is found that VOGS growth rate increases when input plasma power is raised from 100 to 300 W and decreases with further increase in the plasma power. A good comparison of the model outcomes with the available experimental results confirms the adequacy of the present model.  相似文献   

3.
Auger spectroscopy has been used to measure the adsorption kinetics of acetylene and ethylene gases at 300 K on a clean tantalum (110) surface held at either 465 or 680 K, at gas pressures near 10?6 Pa. Adsorption occurs irreversibly with identical initial sticking probabilities for both gases leading to the conclusion that its value is unity. This assumption permits a calculation of absolute coverage of approximately 2 carbon atoms for each tantalum atom in both cases. The fact that this value is the same for both gases suggests that ethylene may dehydrogenate to an acetylenic species as claimed for W(110). Heating a sample previously saturated at 465 K results in desorption of hydrogen accompanied by an increase in the carbon Auger signal. This is interpreted as evidence that at least some of the hydrogen atoms lie further from the surface than do the carbon.  相似文献   

4.
Measurements of the abstraction reaction kinetics in the interaction of gaseous H atoms with D adsorbed on metal and semiconductor surfaces, H(g)+D(ad)/S→ products, have shown that the kinetics of the HD products are at variance with the expectations drawn from the operation of Eley–Rideal mechanisms. Furthermore, in addition to HD product molecules, D2 products were observed which are not expected in an Eley–Rideal scenario. Products and kinetics of abstraction reactions on Ni(100), Pt(111), and Cu(111) surfaces were recently explained by a random-walk model based solely on the operation of hot-atom mechanistic steps. Based on the same reaction scenario, the present work provides numerical solutions of the appropriate kinetic equations in the limit of the steady-state approximation for hot-atom species. It is shown that the HD and D2 product kinetics derived from global kinetic rate constants are the same as those obtained from local probabilities in the random walk model.

The rate constants of the hot-atom kinetics provide a background for the interpretation of measured data, which was missing up to now. Assuming that reconstruction affects the competition between hot-atom sticking and hot-atom reaction, the application of the present model at D abstraction from Cu(100) surfaces reproduces the essential characteristics of the experimentally determined kinetics.  相似文献   


5.
In heterogeneous reactions, the rate constants of desorption, diffusion and elementary reaction steps are usually strongly dependent on reactant coverages due to adsorbate-adsorbate lateral interactions. We analyze the effect of this factor on the bistable regime of the reaction kinetics. As an example, we consider CO oxidation on Pt(111). The equistability lines in the bistable region for this reaction are calculated by analyzing propagation of chemical waves and taking into account the coverage dependence of the CO diffusion coefficient. The results of simulations are compared with the available experimental data. We show that it is possible to obtain the relationship between various kinetic parameters, for example, between CO and oxygen sticking probabilities, by studying special features of the bistable kinetics.  相似文献   

6.
Flame stabilisation and extinction in a number of different flows can be affected by application of electric fields. Electrons and ions are present in flames, and because of charge separation, weak electric fields can also be generated even when there is no externally applied electric field. In this work, a numerical model incorporating ambipolar diffusion and plasma kinetics has been developed to predict gas temperature, species, and ion and electron concentrations in laminar premixed flames without applied electric fields. This goal has been achieved by combining the existing CHEMKIN-based PREMIX code with a recently developed methodology for the solution of electron temperature and transport properties that uses a plasma kinetics model and a Boltzmann equation solver. A chemical reaction set has been compiled from seven sources and includes chemiionisation, ion-molecule, and dissociative–recombination reactions. The numerical results from the modified PREMIX code (such as peak number densities of positive ions) display good agreement with previously published experimental data for fuel-rich, non-sooting, low-pressure acetylene and ethylene flames without applied electric fields.  相似文献   

7.
In this work, we investigated a carbon plasma plume produced by laser ablation of a graphite target in a nitrogen gas environment. The spatial distributions of C and N atoms were measured by time-resolved absorption spectroscopy. The spatial distributions of the relative densities of CN radicals, C2, and C3 molecules were measured using time-resolved emission spectroscopy. We determined that nitrogen gas produced an increase in carbon atom and molecule densities in the ablation plume. It was observed that the addition of RF plasma to the plume increased the CN radicals and C atom densities, and decreased the C2 and C3 molecule densities. The RF plasma changed the evolution of various fractional species of C, N, CN, C2, and C3 in the ablation plume. The chemical reactions with and without RF plasma were explained using the evolution and density of the fractional species of C, N, CN, C2, and C3in the plume. PACS 52.38.Mf; 42.62.Fi; 33.20.-t; 81.05.Uw  相似文献   

8.
Theoretical investigations on the kinetics of pentan-2-ol radical decomposition and isomerization reactions have been carried out in this work, together with the thermochemistry data calculations for important species involved in the reaction process. The B2PLYPD3/6-311++G(d,p) level of theory was used to optimize the geometries of all of the reactants, transition states, products and also the hindered rotor treatment for lower frequency modes. Single-point energies of all species are determined at the ROCCSD(T) level using the cc-PVQZ and cc-pVTZ which were extrapolated to the complete basis set limit (CBS). RRKM/Master Equation has been solved to calculate the pressure- and temperature-dependent rate coefficients for all channels in the pressure range of 0.01–100 atm over 300–2000 K. Pressure and temperature dependent branching fractions of key species produced from different pentan-2-ol radicals shows that 1- and 2-pentene are important bimolecular products. The kinetics and thermochemistry data for the title reactions has been used in the part II of this work for model development for pentan-2-ol oxidation.  相似文献   

9.
A molecular beam technique for the determination of sticking probabilities and surface coverages was used in earlier work to investigate the adsorption of nitrogen on tungsten {110}, {111} and {100} single crystal planes. In the present paper these studies have been extended to the {310}, {320} and {411} planes. Absolute sticking probabilities and adatom surface coverages are reported for crystal temperatures between 90 K and 960 K. Crystallographic anisotropy in this system is exemplified by zero coverage sticking probabilities with the crystal at room temperature: {110}, 1̃0?2; {111}, 0.08; {411}, 0.4; {100}, 0.59; {310}, 0.72; {320}, 0.73. Results for planes on the [001] zone are quantitatively described by a general model developed for adsorption on stepped planes as an extension to the precursor-state order-disorder model for adsorption kinetics of King and Wells. It is shown that nitrogen dissociation only takes place at vacant pairs of {100} sites, but that subsequently the chemisorbed adatoms so formed may migrate out onto {110} terraces. The results are critically analysed in terms of the available LEED and work function data for nitrogen on tungsten single crystal planes, and the general model developed by Adams and Germer.  相似文献   

10.
Chao Li 《中国物理 B》2022,31(4):48706-048706
In recent years, significant increases in waste processing and material engineering have been seen by using advanced oxidation processes. The treatment results and energy yields of these processes are largely determined by the generation and retention of reactive oxygen species (ROS). However, increasing the amount of ROS remains a key challenge because of the unavailability of performance- and energy-efficient techniques. In this study, plasma electrolysis, ultrasound, and plasma electrolysis combined with ultrasound were used to treat dimethyl sulfoxide (DMSO) solutions, and the results showed that the two methods can synergistically convert filament discharge into spark discharge, and the conversion of the discharge mode can significantly increase the concentration of OH radicals and effectively improve the efficiency of DMSO degradation. We verified the rationality of the results by analyzing the mass transfer path of ROS based on the reaction coefficients and found that the ·OH radicals in aqueous solution were mainly derived from the decomposition of hydrogen peroxide. These findings indicated that the synergistic action of plasma electrolysis and ultrasound can enhance the production of chemically reactive species, and provide new insights and guiding principles for the future translation of this combined strategy into real-life applications. Our results demonstrated that the synergistic strategy of ultrasound and plasma electrolysis is feasible in the switching mode and increasing the ROS, and may open new routes for materials engineering and pollutant degradation.  相似文献   

11.
Thin films of aluminum were prepared under ultra-high vacuum conditions in order to investigate the low temperature, low pressure adsorption of water vapor by the aluminum. The kinetics of the water vapor-aluminium reaction have been found to be essentially different than the oxygen-aluminum reaction previously reported. In contrast to the “dry” oxygen uptake kinetics, a plot of the sticking coefficient of H2O versus the total weight gain of the film indicates that the sticking coefficient of H2O passes through a maximum. As a result of the present mass adsorption measurements of water by fresh aluminum surfaces and Huber and Kirk's previous contact potential studies of an oxidized aluminum surface upon exposure to water vapor, a model is suggested, based on the simultaneous lateral growth of oxide nuclei and first order adsorption of water dipoles on the growing oxide nuclei surfaces. The model quantitatively describes the kinetics of the mass adsorption of water and also predicts the contact potential behavior of a fresh aluminum surface upon exposure to water vapor. A sticking coefficient of approximately 0.05 is indicated for H2O on bare aluminum while 0.11 corresponds to the sticking coefficient of water dipoles on the oxide nuclei surfaces.  相似文献   

12.
Trapping probabilities of gas atoms at surfaces are calculated assuming a classical onedimensional square well potential as a function of gas and surface temperatures. It is shown that initial sticking coefficients of chemisorbed gases on transition metal surfaces can in most cases be fit fairly well by this model using reasonable values of the interaction energy, although the model does not predict observed behavior for surface temperatures>600°K. For some systems the initial sticking coefficients are higher than predicted by this model, indicating that other mechanisms of energy transfer are probably operative. The angular dependent sticking coefficient which would be measured in a molecular beam experiment is also computed.  相似文献   

13.
The kinetic lattice gas model is formulated properly to account for adsorption, desorption, and diffusion at surfaces. We examine three choices for the transition probabilities in the master equation, which we term Langmuir, Ising and interaction kinetics, and show how they lead to different sticking coefficients and desorption rates.  相似文献   

14.
A qualitative model is proposed in order to explain our experimental results on ethylene chemisorption on evaporated rhenium films and hydrogenation of ethylene (part I). The surface must present at least two kinds of surface sites (A and B). The second type (B), either preexists on the surface, or is induced by the adsorption phenomenon itself. On the most energetic ones (A), dissociation of ethylene and hydrogen is complete. Adsorption of ethylene is characterized by a sticking coefficient value of 0.1 if they are free and 1 if they are hydrogen covered. On sites B, ethylene is adsorbed without full dissociation (sticking coefficients equal to 0.015). independent on adsorption temperature. Hydrogen desorption is due to full dissociation of ethylene on the surface and a displacement reaction while ethane is produced by reaction between non-dissociated adsorbed ethylene and hydrogen in the gas phase. The same Rideal-Eley mechanism applies for hydrogenation of ethylene in quasi-stationary conditions, along with a self-poisoning mechanism involving dehydrogenation leading to C2H2 non-hydrogenable adsorbed species.  相似文献   

15.
A sticking probability model based on the average cluster lifetime is employed for deducing a kernel capable to describe the kinetics of computer simulated irreversible aggregation processes in two dimensions. The deduced kernel describes not only the time evolution of the cluster size distribution for diffusion limited aggregation (DLCA) and reaction limited aggregation (RLCA) but also for the entire transition region between both regimes. The model predicts a crossover to diffusion limited cluster aggregation for all sticking probabilities at long aggregation times. The time needed for reaching the DLCA limit increases for decreasing sticking probability. Received 16 April 2001 and Received in final form 24 May 2001  相似文献   

16.
本文采用实验测量和数值模拟结合的方法,对AC放电下He/CH4/O2混合气中激发态对甲烷裂解和低温氧化的动力学贡献进行研究。基于HP-Mech,增加反应物的放电机理以及激发态参与的化学反应及其驰豫反应,建立CH4低温氧化机理。采用化学反应动力学求解器CHEMKIN中的两段式Plasma-PSR模型模拟放电过程及化学反应过程。该动力学模型能较好地预测反应物的消耗和主要产物的生成,反应路径分析表明激发态物质CH4(v),O2(v),O2(a^1△g)等通过链式反应CH4(v)+OH→CH3+H2O,O2(v)+H→OH+O,O2(a^1△g)+H→OH+O促进活性自由基和产物的生成。  相似文献   

17.
《Surface science》1994,316(3):L1099-L1104
A molecular beam of CO, impinging on a Ft surface saturated with molecular oxygen, causes displacement of O2 molecules into the gas phase. The kinetics of the displacement and associated CO sticking have been measured for CO kinetic energies in the range 0.06-1.83 eV. At low kinetic energies the main displacement channel is associated with the sticking of CO, which by dynamic energy and momentum transfer causes O2 molecules to leave the surface, with a probability of 0.09 per stuck CO molecule. At the highest CO kinetic energies an additional displacement channel is appearing, namely inelastic (non-sticking) scattering of CO molecules, which deposit enough energy to displace adsorbed O2 into the gas phase.  相似文献   

18.
19.
Atmospheric-pressure plasmas are used in a variety of materials processes. Traditional sources include transferred arcs, plasma torches, corona discharges, and dielectric barrier discharges. In arcs and torches, the electron and neutral temperatures exceed 3000°C and the densities of charge species range from 1016-1019 cm-3. Due to the high gas temperature, these plasmas are used primarily in metallurgy. Corona and dielectric barrier discharges produce nonequilibrium plasmas with gas temperatures between 50-400°C and densities of charged species typical of weakly ionized gases. However, since these discharges are nonuniform, their use in materials processing is limited. Recently, an atmospheric-pressure plasma jet has been developed, which exhibits many characteristics of a conventional, low-pressure glow discharge. In the jet, the gas temperature ranges from 25-200°C, charged-particle densities are 10 11-1012 cm-3, and reactive species are present in high concentrations, i.e., 10-100 ppm. Since this source may be scaled to treat large areas, it could be used in applications which have been restricted to vacuum. In this paper, the physics and chemistry of the plasma jet and other atmospheric-pressure sources are reviewed  相似文献   

20.
Ketones have been considered as potential biofuels and main components of blend stock for internal engines. To better understand the chemical kinetics of ketones, ignition delay times of 2-pentanone (propyl methyl ketone, PMK) and 3-pentanone (diethyl ketone, DEK) were measured at temperatures of 895–1128 K under 10 and 20 bar, at equivalence ratios (?) of 0.5 and 1.0 in a rapid compression machine (RCM). To explore the impact of carbonyl functionality and resonance stabilized structures of fuel radicals on their combustion kinetics, high-temperature pyrolysis at 1130 K and relatively low-temperature oxidation at 950 K studies were performed in an RCM, and the time-resolved species concentration profiles under these two conditions were quantified using a fast sampling system and gas chromatography (GC). A new kinetic model containing low-temperature reactions was built aiming at predicting the pyrolysis and oxidation behaviors of both ketones. The consumption pathways of the resonance stabilization fuel radicals through oxygen addition and following reactions are promoted since the decomposition rates of these radicals are about 4 orders magnitudes lower than regular fuel radicals. The occurrences of the so-called “addition-dissociation reactions”, i.e., ketones reacting with a hydrogen yielding aldehyde or reacting with a methyl radical yielding shorter-chain-length ketones, are verified in pyrolysis experiments. Based on experiments and model analysis, the carbonyl functionality in both ketones is preserved during the process of β-scissions of fuel radicals and α-scissions of fuel-related acyl radicals, resulting in the direct formation of CO and ketene. However, the position of carbonyl functionality has a significant impact on the species pools.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号