首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The atomic structure and charge distribution of Ag adsorbed Ge(0 0 1) surfaces have been investigated by means of Ge 3d core- and Ag 4d core-levels photoelectron spectroscopy. A mono-atomic layer of Ag was deposited on the clean Ge(0 0 1) c(4×2) surface at 80 K. The Ge 3d spectrum measured at 80 K was deconvoluted into two surface components, which is consistent with the previously proposed Ag ad-dimer model. After annealing the surface at room temperature, the rearrangement of the charge distribution was revealed to include electron transfer from Ge to Ag in conjunction with the surface restructuring process by the annealing.  相似文献   

2.
We theoretically investigate the electron transport properties in a non-magnetic heterostructure with both Dresselhaus and Rashba spin-orbit interactions. The detailed-numerical results show that (1) the large spin polarization can be achieved due to Dresselhaus and Rashba spin-orbit couplings induced splitting of the resonant level, although the magnetic field is zero in such a structure, (2) the Rashba spin-orbit coupling plays a greater role on the spin polarization than the Dresselhaus spin-orbit interaction does, and (3) the transmission probability and the spin polarization both periodically change with the increase of the well width.  相似文献   

3.
The effects of hyperthermal proton bombardment on alkanethiol self-assembled monolayer (SAM) on Au(1 1 1) are studied with scanning tunneling microscopy (STM) and X-ray photoemission spectroscopy (XPS). The STM and XPS results show that proton bombardment with proton energy as low as 2 eV can induce cross-linking of the adsorbed alkanethiols and transform the original ordered SAM lattice to an array of nanoclusters of the cross-linked alkanethiols. For a bombardment at 3 eV with a fluence of 3×1015 cm−2, the typical cluster size is about 5 nm. In addition, the cluster size distribution is narrow, with no cluster larger than 8 nm. The cluster growth can be promoted by increasing the fluence at a fixed bombardment energy or increasing the energy at a fixed fluence. This indicates that surface diffusion of alkanethiols and cluster growth can be harnessed by the control of the bombardment energy and fluence.  相似文献   

4.
A rapid X-ray diffraction method was proposed for in situ observation of a surface-intermediate structure on a liquid-solid interface. It used a combination of higher-energy monochromatic synchrotron X-rays in grazing incidence and an X-ray two-dimensional detector. Overall patterns were in situ taken, with one-time exposure, of the reciprocal-lattice space of a Au (1 1 1) electrode surface which was fixed at an angular position. We deduced change in crystal domain shapes of surface intermediates as well as its smaller lattice distortion by observing images of reconstructed surface rods during a surface-structural phase transition from the reconstructed surface to the bulk terminated surface. An anisotropic shape of surface-crystal domains was also observed.  相似文献   

5.
Self-organized magnetic nanoparticles are obtained through selective silicidation of cobalt using a silicon substrate pre-structured with tri-dimensional gold islands as template. On the step bunches array of a vicinal Si(1 1 1) surface, gold deposition results in the formation of nanodroplets aligned along the step bunches. A subsequent cobalt deposition is performed onto this gold islands-covered Si surface, with two silicidation processes investigated: reactive deposition (RD) and solid phase reaction (SPR). The cobalt is converted into a non-magnetic silicide film except where the surface is locally masked by the gold islands, giving rise to cobalt nanomagnets which can be capped by a gold layer. A scanning tunneling microscopy comparative study of RD and SPR processes demonstrates that the former induces strong surface morphology changes while the latter preserves the pristine islands. Magnetic measurements performed with alternating gradient force magnetometry at room temperature are used to demonstrate the presence of ferromagnetic cobalt nanoparticles on SPR-processed samples. These nanomagnets show a clear in-plane anisotropy behavior.  相似文献   

6.
X-ray reflectivity and non-specular crystal truncation rod scans have been used to determine the three-dimensional atomic structure of the buried CaF2-Si(1 1 1) interface and ultrathin films of MnF2 and CaF2 within a superlattice. We show that ultrathin films of MnF2, below a critical thickness of approximately four monolayers, are crystalline, pseudomorphic, and adopt the fluorite structure of CaF2. High temperature deposition of the CaF2 buffer layer produces a fully reacted, CaF2-Si(1 1 1) type-B interface. The mature, “long” interface is shown to consist of a partially occupied layer of CaF bonded to the Si substrate, followed by a distorted CaF layer. Our atomistic, semi-kinematical scattering method extends the slab reflectivity method by providing in-plane structural information.  相似文献   

7.
The effect of bias voltage on electron tunneling across a junction with a ferroelectric-ferromagnetic composite barrier is investigated theoretically. Because of the inversion symmetry breaking of the spontaneous ferroelectric polarization, bias voltage dependence of the electron tunneling shows significant differences between the positive bias and the negative one. The differences of spin filtering or tunnel magnetoresistance increase with the increasing absolute value of bias voltage. Such direction preferred electron tunneling is found intimately related with the unusual asymmetry of the electrical potential profile in two-phase composite barrier and provides a unique change to realize rectifying functions in spintronics.  相似文献   

8.
In this paper, we theoretically investigate the effect of the bias and temperature on the electron transport properties in a magnetic nanostructure. It is found that the large spin-polarization can be achieved in such a nanostructure, and the degree of spin-polarization obviously increases with increasing applied bias. It is also found that the conductance curves for the different temperatures obviously intersect at the same Fermi energy for the low Fermi energy, and the degree of spin-polarization decreases with the increase of temperature. Thus, we can control the electron transport through changing the bias and temperature.  相似文献   

9.
We present direct measurements of the lifetime of the 4F5/2 and 2H(2)9/2 manifold in Nd3+:YLiF4, using a fluorescence pump-probe technique. The technique populates the 4F5/2 and 2H(2)9/2 manifold directly with a pump pulse. Via excited state absorption from this excited manifold, the 2F(2)5/2 manifold of Nd3+ is populated with a delayed probe pulse. The population in the 4F5/2 and 2H(2)9/2 manifold is monitored as a function of time by observing the change in integrated UV fluorescence from the 2F(2)5/2 manifold for each time delay between pump and probe pulses. The pump and probe beams come from the fundamental and second harmonic wavelengths of a femtosecond Ti:sapphire regenerative amplifier. The measured lifetime agrees well with the energy gap law, based on other nonradiative lifetime measurements from the literature for Nd3+:YLiF4.  相似文献   

10.
We present a femtosecond laser-based technique for etching and forward transfer of bulk transparent materials in solid-phase. Femtosecond laser pulses with were focused through a fused silica block onto an absorbing thin film of Cr. A constraining Si wafer was pressed into tight contact with the Cr film to prevent lift-off of the film. A combination of the high temperature and pressure of the Cr, and compressive stress from the Si, resulted in etching of smooth features from the fused silica by cracking. Unlike in conventional ablative or chemical etching, the silica was removed from the bulk as single solid-phase pieces which could be collected on the Si. Using this so-called laser-induced solid etching (LISE) technique, 1-2 m deep pits and channels have been produced in the silica surface, and corresponding dots and lines deposited on the Si. The threshold fluence for etching was found to be with duration pulses. The morphology of the etched features are investigated as functions of fluence and exposure to multiple pulses.  相似文献   

11.
The electron-phonon interaction in cuprates with c-axis polarised optical phonons, which is roughly one order of magnitude stronger than superexchange, bounds holes into mobile bipolarons. Bipolarons pin the chemical potential within the charge-transfer gap of doped Mott insulators, accounting for unusual kinetics and thermodynamics of doped cuprates such as the Nernst and giant proximity effects, pseudo-gaps, and normal-state diamagnetism. We propose that “quasi-particle” peaks, “Fermi-arcs”, and high-energy “waterfalls” in the photoemission spectra of cuprates originate from the photo-ionization matrix elements of disorder-localised band-tails in the charge-transfer gap.  相似文献   

12.
In this study, a phase-change memory device was fabricated and the origin of device failure mode was examined using transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS). Ge2Sb2Te5 (GST) was used as the active phase-change material in the memory device and the active pore size was designed to be 0.5 m. After the programming signals of more than 2×106 cycles were repeatedly applied to the device, the high-resistance memory state (reset) could not be rewritten and the cell resistance was fixed at the low-resistance state (set). Based on TEM and EDS studies, Sb excess and Ge deficiency in the device operating region had a strong effect on device reliability, especially under endurance-demanding conditions. An abnormal segregation and oxidation of Ge also was observed in the region between the device operating and inactive peripheral regions. To guarantee an data endurability of more than 1×1010 cycles of PRAM, it is very important to develop phase-change materials with more stable compositions and to reduce the current required for programming.  相似文献   

13.
High-κ dielectrics SrZrO3 were prepared on Ge(0 0 1) substrate using pulse laser deposition, and band alignments and thermal annealing effects were studied with high resolution X-ray photoemission spectroscopy. Valence and conduction band offsets at this interface were measured to be 3.26 eV and 1.77 eV, respectively. Interfacial Ge oxide layers were found at the interface. After annealing at 600 °C, the interfacial Ge oxide layers were eliminated, and the valence band offset increased to 3.50 eV, but the amorphous SrZrO3 became polycrystalline in the meantime.  相似文献   

14.
The magnetic anisotropy of epitaxial Fe films with thicknesses in the range of 2-142 monolayers (ML) grown on {4×2} reconstructed InAs(0 0 1) was investigated by in situ ferromagnetic resonance. The easy magnetization direction was found to be parallel to the -direction for Fe films below 4 ML, while it rotates by 45° toward the -direction. It is observed that both surface-interface and volume contribution to the perpendicular anisotropy favor an easy axis perpendicular to the film plane. The cubic surface-interface anisotropy is relatively large with easy axes along -directions in contrast to the volume contribution which favors easy axes along the -directions. The volume contribution is found to be larger than the Fe bulk cubic anisotropy. A thickness independent uniaxial anisotropy has been found in films with a thickness of 2 up to 142 ML.  相似文献   

15.
We present an ab initio density-functional study for aluminium adsorption on Ir(1 1 1) at high symmetry sites, namely, the fcc-, hcp-hollow, top and bridge sites. In each case, we calculate the atomic geometry, average binding energy, work function, and surface dipole moment at the coverage of 0.25 monolayer. We find the favourable structure to be Al at threefold hcp-hollow site, with a corresponding binding energy of 4.46 eV. We present and compare the electronic properties of the two lowest energy structures, i.e., at the threefold hollow sites and discuss the nature of the Al-Ir bond and binding site preference. In particular, we observe a large hybridization of Al-3s, 3p and Ir-5d states near Fermi level, forming an inter-metallic bonds. This results in a significant electron transfer from the Al atoms to the Ir(1 1 1) substrate, inducing an outward pointing surface dipole moment and a large decrease in the work function of 1.69 eV for Al in the hcp-hollow site. Compared to the fcc-hollow site, adsorption in the hcp-hollow site results in a lower density-of-states at the Fermi level, as well as a greater hybridization in the bonding states.  相似文献   

16.
The binding energy of a hydrogenic donor impurity in a wurtzite (WZ) GaN/AlGaN quantum dot (QD) is investigated, including the strong built-in electric field effect due to the spontaneous and piezoelectric polarizations. Numerical results show that the strong built-in electric field induces an asymmetrical distribution of the donor binding energy with respect to the center of the QD. The donor binding energy is insensitive to dot height when the impurity is located at the right boundary of the QD with large dot height.  相似文献   

17.
We investigated the phonon scattering effects on the transport properties of carbon nanotube devices with micron-order lengths at room temperature, using the time-dependent wave-packet approach based on the Kubo formula within a tight-binding approximation. We studied the scattering effects of both the longitudinal acoustic and the optical phonons on the transport properties. The conductance of semiconducting nanotubes is decreased by the acoustic phonon, instead of the optical phonon. Furthermore, we clarified how the electron mobilities of the devices are affected by the acoustic phonon.  相似文献   

18.
Ultra thin platinum films were grown by dc magnetron sputtering on thermally oxidized Si (1 0 0) substrates. The electrical resistance of the films was monitored in situ during growth. The coalescence thickness was determined for various growth temperatures and found to increase from 1.1 nm for films grown at room temperature to 3.3 nm for films grown at 400 °C. A continuous film was formed at a thickness of 2.9 nm at room temperature and 7.5 nm at 400 °C. The room temperature electrical resistivity decreases with increased growth temperature, while the in-plain grain size and the surface roughness, measured with a scanning tunneling microscope (STM), increase. Furthermore, the temperature dependence of the film electrical resistance was explored at various stages during growth.  相似文献   

19.
Neutron scattering results on single crystals shed light on the static and dynamic properties of the superconductor () PuCoGa5 and its isostructural but antiferromagnetic () homologue NpCoGa5. By polarized neutron diffraction the magnetization density in the paramagnetic state of both compounds has been inferred. The microscopic magnetization of NpCoGa5 is consistent with the orbital and spin components of a localized Np3+ magnetic moment. In the case of PuCoGa5 the microscopic magnetization is small, temperature-independent and cannot be described as a localized Pu3+ magnetic moment. For NpCoGa5 a dynamic magnetic signal has been observed by three-axis spectroscopy in the antiferromagnetically ordered state. The magnetic signal is strongest at the antiferromagnetic zone center and an energy transfer of about 5 meV. Magnetic fluctuations persist at this position in the paramagnetic state. The dynamic response is similar to the dynamic response observed in other actinide intermetallic compounds. This supports the possibility that magnetic fluctuations could also be present in the paramagnetic superconductor PuCoGa5.  相似文献   

20.
Using a general expression for dc Josephson current, we study the Josephson effect in ballistic superconductor (SC)/ferromagnetic semiconductor (FS)/SC junctions, in which the mismatches of the effective mass and Fermi velocity between the FS and SC, spin polarization P in the FS, as well as strengths of potential scattering Z at the interfaces are included. It is shown that in the coherent regime, the oscillatory dependences of the maximum Josephson current on the FS layer thickness L and Josephson current on the macroscopic phase difference φ for the heavy and light holes, resulting from the spin splitting energy gained or lost by a quasiparticle Andreev-reflected at the FS/SC interface, are much different due to the different mismatches in the effective mass and Fermi velocity between the FS and the SC, which is related to the crossovers between positive (0) and negative (π) couplings or equivalently 0 and π junctions. Also, we find that, for the same reason, Z and P are required not to surpass different critical values for the Josephson currents of the heavy and light holes. Furthermore, it is found that, for the dependence of the Josephson current on φ, regardless of how L,Z, and P change, the Josephson junctions do not transit between 0 and π junctions for the light hole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号