首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The laser ablation of Ge and GaAs targets placed in water and ethanol was carried out using the fundamental radiation of nanosecond Nd:YLF laser. The results of preparation and the optical and nonlinear optical characterization of the Ge and GaAs nanoparticle suspensions are presented. The considerable shift of the band gap energy of the nanoparticles compared to the bulk semiconductors was observed. The distribution of nanoparticle sizes was estimated in the range of 1.5-10 nm on the basis of the TEM and spectral measurements. The nonlinear refractive indices and nonlinear absorption coefficients of Ge and GaAs nanoparticles were defined by the z-scan technique using second harmonic radiation of picosecond Nd:YAG laser (λ = 532 nm).  相似文献   

2.
A large effective second-order optical susceptibility equal to about 52 pm/V for ZnO films with thickness about several μm deposited on MgO substrate by molecular epitaxial method was achieved using a bicolour coherent treatment by a pulsed 1.32 μm Nd-YAG laser and its second harmonic at λ = 0.66 μm. The written grating was stable during 24 days and its optical susceptibility decreased not more than 26% with respect to the initially written one after interruption of optical treatment. The same measurements performed for the ZnO films deposited by metaloorganic chemical vapor deposition, pulsed laser ablation and spray pyrolysis have shown that the output optical susceptibility is at least half order less. The temperature dependences of the second order susceptibilities have shown that it achieves a maximum near a temperature of 261 K. Other methods do not show substantial temperature dependences. We have found that maximal second harmonic generation signal was achieved for the films with thickness of about 2.75 μm.  相似文献   

3.
Colloidal solutions of Indium oxide nanoparticles have been produced by means of laser ablation in liquids (LALs) technique by simply irradiating with a second harmonic (532 nm) Nd:YAG laser beam a metallic indium target immersed in distilled water and varying the laser fluence up to 10 J cm−2 and the ablation time up to 120 min. At all the investigated fluences the vaporization process of the indium target is the dominant one. It produces a majority (>80%) of small size (<6 nm) nanoparticles, with a very limited content of larger ones (size between 10 and 20 nm). The amount of particles increases regularly with the ablation time, supporting the scalability of the production technique. The deposited nanoparticles stoichiometry has been verified by both X-ray photoelectron spectroscopy (XPS) and Energy Dispersive X-ray (EDX) analysis. Optical bandgap values of 3.70 eV were determined by UV-vis absorption measurements. All these results confirm the complete oxidation of the ablated material.  相似文献   

4.
We have used high-energy resolution X-ray photoelectron spectroscopy to measure valence band offsets at the epitaxial anatase TiO2(0 0 1)/n-SrTiO3(0 0 1) heterojunction prepared by molecular beam epitaxy. The valence band offsets range between −0.06 ± 0.05 and +0.16 ± 0.05 eV for anatase thicknesses between 1 and 8 monolayers and three different methods of substrate surface preparation, with no systematic dependence on film thickness. The conduction band offset (CBO) varies over a comparable range by virtue of the fact that anatase and SrTiO3 exhibit the same bandgap (∼3.2 eV). In contrast, density functional theory predicts the VBO to be +0.55 eV. The lack of agreement between theory and experiment suggests that either some unknown factor in the interface structure or composition excluded from the modeling is influencing the band offset, or that density functional theory cannot accurately calculate band offsets in these oxide materials. The small experimental band offsets have important implications for the use of this interface for fundamental investigations of surface photocatalysis. Neither electrons nor holes are likely to become trapped in the substrate and thus be unable to participate in surface photocatalytic processes.  相似文献   

5.
C.F. Cai  J.X. Si  Y. Xu 《Applied Surface Science》2010,256(20):6057-6059
The band offset at the interface of PbTe/Ge (1 0 0) heterojunction was studied by the synchrotron radiation photoelectron spectroscopy. A valence band offset of ΔEV = 0.07 ± 0.05 eV, and a conduction band offset of ΔEC = 0.27 ± 0.05 eV are concluded. The experimental determination of the band offset for the PbTe/Ge interface should be beneficial for the heterojunction to be applied in new optoelectronic and electronic devices.  相似文献   

6.
The electronic structure and the electron dynamics of the clean InAs(1 1 1)A 2 × 2 and the InAs(1 1 1)B 1 × 1 surfaces have been studied by laser pump-and-probe photoemission spectroscopy. Normally unpopulated electron states above the valence band maximum (VBM) are filled on the InAs(1 1 1)A surface due to the conduction band pinning above the Fermi level (EF). Accompanied by the downward band banding alignment, a charge accumulation layer is confined to the surface region creating a two dimensional electron gas (2DEG). The decay of the photoexcited carriers above the conduction band minimum (CBM) is originated by bulk states affected by the presence of the surface. No occupied states were found on the InAs(1 1 1)B 1 × 1 surface. This fact is suggested to be due to the surface stabilisation by the charge removal from the surface into the bulk. The weak photoemission intensity above the VBM on the (1 1 1)B surface is attributed to electron states trapped by surface defects. The fast decay of the photoexcited electron states on the (1 1 1)A and the (1 1 1)B surfaces was found to be τ1 1 1 A ? 5 ps and τ1 1 1 B ?  4 ps, respectively. We suggest the diffusion of the hot electrons into the bulk is the decay mechanism.  相似文献   

7.
High-quality LaCuO2, elaborated by solid-state reaction in sealed tube, crystallizes in the delafossite structure. The thermal analysis under reducing atmosphere (H2/N2: 1/9) revealed a stoichiometric composition LaCuO2.00. The oxide is a direct band-gap semiconductor with a forbidden band of 2.77 eV. The magnetic susceptibility follows a Curie-Weiss law from which a Cu2+ concentration of 1% has been determined. The oxygen insertion in the layered crystal lattice induces p-type conductivity. The electrical conduction occurs predominantly by small polaron hopping between mixed valences Cu+/2+ with an activation energy of 0.28 eV and a hole mobility (μ300 K=3.5×10−7 cm2 V−1 s−1), thermally activated. Most holes are trapped in surface-polaron states upon gap excitation. The photoelectrochemical study, reported for the first time, confirms the p-type conduction. The flat band potential (Vfb=0.15 VSCE) and the hole density (NA=5.8×1017 cm−3) were determined, respectively, by extrapolating the curve C−2 versus the potential to their intersection with C−2=0 and from the slope of the linear part in the Mott-Schottky plot. The valence band is made up of Cu-3d orbital, positioned at 4.9 eV below vacuum. An energy band diagram has been established predicting the possibility of the oxide to be used as hydrogen photocathode.  相似文献   

8.
Poly(dimethylsiloxane) (PDMS) has been irradiated with a frequency quadrupled Nd:YAG laser and a KrF*-excimer laser at a repetition rate of 1 Hz. The analysis of ablation depth versus pulse number data reveals a pronounced incubation behavior. The thresholds of ablation (266 nm: 210 mJ cm−2, 248 nm: 940 mJ cm−2) and the corresponding effective absorption coefficients αeff (266 nm: 48900 cm−1, 248 nm: 32700 cm−1, αlin = 2 cm−1) were determined. The significant differences in the ablation thresholds for both irradiation wavelengths are probably due to the different pulse lengths of both lasers. Since the shorter pulse length yields a lower ablation threshold, the observed incubation can be due to a thermally induced and/or a multi-photon absorption processes of the material or impurities in the polymer.Incubation of polymers is normally related to changes of the chemical structure of the polymer. In the case of PDMS, incubation is associated with local chemical transformations up to several hundred micrometers below the polymer surface. It is possible to study these local chemical transformations by confocal Raman microscopy, because PDMS is transparent in the visible. The domains of transformation consist of carbon and silicon, as indicated by the appearance of the carbon D- and G-bands between 1310 and 1610 cm−1, a band appearing between 502 and 520 cm−1 can be assigned to mono- and/or polycrystalline silicon.The ablation products, which are detected in the surroundings of the ablation crater consist of carbon and amorphous SiOx (x ≈ 1.5) as detected by infrared spectroscopy.  相似文献   

9.
Investigation of the process of nanohole formation on silicon surface mediated with near electromagnetic field enhancement in vicinity of gold particles is described. Gold nanospheres with diameters of 40, 80 and 200 nm are used. Irradiation of the samples with laser pulse at fluences below the ablation threshold for native Si surface, results in a nanosized surface modification. The nanostructure formation is investigated for the fundamental (λ = 800 nm, 100 fs) and the second harmonic (λ = 400 nm, 250 fs) of the laser radiation generated by ultrashort Ti:sapphire laser system. The near electric field distribution is analyzed by an Finite Difference Time Domain (FDTD) simulation code. The properties of the produced morphological changes on the Si surface are found to depend strongly on the polarization and the wavelength of the laser irradiation. When the laser pulse is linearly polarized the produced nanohole shape is elongated in the E-direction of the polarization. The shape of the hole becomes symmetrical when the laser radiation is circularly polarized. The size of the ablated holes depends on the size of the gold particles, as the smallest holes are produced with the smallest particles. The variation of the laser fluence and the particle size gives possibility of fabricating structures with lateral dimensions ranging from 200 nm to below 40 nm. Explanation of the obtained results is given on the basis simulations of the near field properties using FDTD model and Mie's theory.  相似文献   

10.
Pulsed laser ablation of Ag and Au targets, immersed in double-distilled water is used to synthesize metallic nanoparticles (NPs). The targets are irradiated for 20 min by laser pulses at different wavelengths—the fundamental and the second harmonic (SHG) (λ = 1064 and 532 nm, respectively) of a Nd:YAG laser system. The ablation process is performed at a repetition rate of 10 Hz and with pulse duration of 15 ns. Two boundary values of the laser fluence for each wavelength under the experimental conditions chosen were used—it varied from several J/cm2 to tens of J/cm2. Only as-prepared samples were measured not later than two hours after fabrication. The NPs shape and size distribution were evaluated from transmission electron microscopy (TEM) images. The suspensions obtained were investigated by optical transmission spectroscopy in the near UV and in the visible region in order to get information about these parameters. Spherical shape of the NPs at the low laser fluence and appearance of aggregation and building of nanowires at the SHG and high laser fluence was seen. Dependence of the mean particle size at the SHG on the laser fluence was established. Comments on the results obtained have been also presented.  相似文献   

11.
We have investigated the surface magnetization anisotropy of 5 at% Co doped rutile TiO2 (1 1 0) using magnetization-induced optical second harmonic generation (MSHG) in the longitudinal Kerr configuration with an incident beam angle of 4°. The MSH intensity pattern from the Co:TiO2 without surface Co clusters showed two anisotropic lobes at the second harmonic photon energy of 2?ω=3.13 eV. Since MSH intensity is proportional to surface magnetization, the result indicates an anisotropy of the surface magnetization of Co:rutile TiO2 (1 1 0). This confirms the possibility that 5 at% Co:rutile TiO2 (1 1 0) is a ferromagnetic dilute magnetic semiconductor at its surface, as proposed in our previous paper.  相似文献   

12.
Femtosecond dynamics of excess electrons photo-injected into amorphous and crystalline D2O layers on Ru(0 0 1) have been investigated by time-resolved two-photon photoelectron spectroscopy. In the crystalline case, excited electrons are transferred into delocalized states considered as image potential states in the conduction band of ice and relax back to the metal on an ultrafast time scale. The life time of the n = 1 image potential state is <5 fs. In the amorphous case, spectral features arise from delocalized and localized electronic states. Relaxation of delocalized electrons back to the metal is as fast as in the crystalline case. The binding energy of localized electrons, however, is found to increase as a function of time delay by 1 eV/ps, which is attributed to the formation of solvated electrons. Such energetic stabilization starting at the bottom of the conduction band is clearly absent in crystalline layers. This pronounced correlation of electronic structure and electron dynamics with molecular structure is associated with the presence of localized states near the bottom of the conduction band in amorphous ice. Such localized states are absent for perfect periodic crystalline structures but prevail in amorphous systems where they serve as precursor sites for electron solvation.  相似文献   

13.
Zn1−xCuxO thin films (x=0, 1.0, 3.0, 5.0%) are prepared on quartz substrate by sol–gel method. The structure and morphology of the samples are investigated by X-ray diffraction (XRD) and atomic force microscopy (AFM). The results show that Cu ions were effectively penetrated into the ZnO crystal lattices with substitutional and interstitial impurities to form stable solid solutions without changing the polycrystalline wurtzite structure. Two peaks at 420 nm (2.95 eV, violet), 485 nm (2.56 eV, blue) have been observed from the photoluminescence (PL) spectra of the samples. It is concluded that the violet peak may correspond to the exciton emission; the blue emission corresponds to the electron transition from the bottom of the conduction band to the acceptor level of zinc vacancy. The optical test shows that the optical band gap Eg is decreased with the increase amount of Cu doping in ZnO. The band gap decrease from 3.40 eV to 3.25 eV gradually. It is also found that the transmission rate is increased rapidly with the increase of Cu ions concentration.  相似文献   

14.
A new organic nonlinear optical material 1-(4-fluorostyryl)-4-nitrostilbene (FNS) has been synthesized and single crystals of FNS were grown using solvent evaporation solution growth technique (SESGT) by 2-butanon solvent. Single crystal x-ray diffraction analysis reveals the unit cell parameters of the grown crystal are a = 9.494(4) Å, b = 9.864(2) Å, c = 19.501(7) Å and it belongs to monoclinic system with noncentrosymmetric space group. Optical transmittance of the grown crystal has been studied by UV-Vis-NIR spectrum. The optical properties of FNS have been studied by means of optical transmittance measurements in the wavelength range of 190–1100 nm The optical constants were calculated from the optical transmittance (T) data such as refractive index (n), extinction coefficient (k) and reflectance (R). The optical band gap (Eg) of FNS is 3.27 eV with direct transition. The complex dielectric (?) constant of the grown FNS crystal was determined. The second harmonic generation (SHG) efficiency of the grown FNS crystal has been studied by using Kurtz-Perry powder technique and it shows 12 times relatively greater than KDP.  相似文献   

15.
B-N codoped p-type ZnO thin films have been realized by radio frequency (rf) magnetron sputtering using a mixture of argon and oxygen as sputtering gas. Types of conduction and electrical properties in codoped ZnO films were found to be dependent on oxygen partial pressure ratios in the sputtering gas mixture. When oxygen partial pressure ratio was 70%, the codoped ZnO film showed p-type conduction and had the best electrical properties. Additionally, the p-ZnO/n-Si heterojunction showed a clear p-n diode characteristic. XRD results indicate that the B-N codoped ZnO film prepared in 70% oxygen partial pressure ratio has high crystal quality with (0 0 2) preferential orientation. Meanwhile, the B-N codoped ZnO film has high optical quality and displays the stronger near band edge (NBE) emission in the temperature-dependent photoluminescence spectrum, the acceptor energy level was estimated to be located at 125 meV above the valence band.  相似文献   

16.
Fluorine doped SnO2 films have been successfully prepared at optimized substrate temperature of 723 K by spray pyrolysis technique. The XRD analysis confirmed that films deposited with F/Sn ratio of 0.05 showed a partial amorphous nature whereas films deposited with F/Sn = 0.10 exhibited tetragonal structure (2 0 0) as the preferred orientation and polycrystalline structure. The lattice constants were found to be a = 0.4750 and c = 0.3197 nm. The theoretically constructed XRD pattern for SnO2 was used to compare with experimental pattern, the difference between them is discussed. By using SEM analysis, the surface morphology of the films was observed as an effect of the variation of F/Sn ratio. At low temperature, the mobility due to lattice, polar, impurity, grain boundary and neutral scattering was estimated for SnO2 and the possible scattering mechanisms were assigned to SnO2:F films using experimentally obtained electrical data. The Mott parameters were determined by applying variable range hopping (VRH) conduction mechanism for SnO2:F films (F/Sn = 0.05) where band conduction mechanism shifted to VRH conduction at below about 250 K.  相似文献   

17.
Laser fluence, repetition rate and pulse duration effects on paint ablation   总被引:1,自引:0,他引:1  
The efficiency (mm3/(J pulse)) of laser ablation of paint was investigated with nanosecond pulsed Nd:YAG lasers (λ = 532 nm) as a function of the following laser beam parameters: pulse repetition rate (1-10,000 Hz), laser fluence (0.1-5 J/cm2) and pulse duration (5 ns and 100 ns). In our study, the best ablation efficiency (η ≅ 0.3 mm3/J) was obtained with the highest repetition rate (10 kHz) at the fluence F = 1.5 J/cm2. This ablation efficiency can be associated with heat accumulation at high repetition rate, which leads to the ablation threshold decrease. Despite the low thermal diffusivity and the low optical absorption of the paint (thermal confinement regime), the ablation threshold fluence was found to depend on the pulse duration. At high laser fluence, the ablation efficiency was lower for 5 ns pulse duration than for the one of 100 ns. This difference in efficiency is probably due to a high absorption of the laser beam by the ejected matter or the plasma at high laser intensity. Accumulation of particles at high repetition rate laser ablation and surface shielding was studied by high speed imaging.  相似文献   

18.
The valence band offset (VBO) of MgO/TiO2 (rutile) heterojunction has been directly measured by X-ray photoelectron spectroscopy. The VBO of the heterojunction is determined to be 1.6 ± 0.3 eV and the conduction band offset (CBO) is deduced to be 3.2 ± 0.3 eV, indicating that the heterojunction exhibits a type-I band alignment. These large values are sufficient for MgO to act as tunneling barriers in TiO2 based devices. The accurate determination of the valence and conduction band offsets is important for use of MgO as a buffer layer in TiO2 based field-effect transistors and dye-sensitized solar cells.  相似文献   

19.
Using the Z-scan technique and pump–probe technique with 130 fs laser pulses at 800 nm, we verify that an intraband one-photon absorption follows the interband two photon absorption. Particularly, we find that there is an intraband relaxation interspersed between these two absorption processes for some of the conduction band electrons but not all of them. In this study, we measure the interband two photon absorption coefficient and the absorptive cross sections associated with both excitation pathways within the conduction band. In addition, we estimate the time for relaxation of electrons within the conduction band to be 250 fs.  相似文献   

20.
AgGa1−xInxS2 with x = 0.14 ± 0.01 was found to be 90° phase-matchable for the second harmonic generation (SHG) of CO2 laser radiation at 10.591 μm at 203 °C. In addition, temperature-tuned 90° phase-matched difference frequency generation (DFG) at 4.02 μm was demonstrated by mixing the idler output of a Nd:YAG third harmonic pumped β-BBO optical parametric oscillator and its fundamental source at 1.0642 μm. The Sellmeier and thermo-optic dispersion formulas that reproduce well these experimental data are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号