首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Crystalline magnesium oxide (MgO) (1 1 1), 20 Å thick, was grown by molecular beam epitaxy (MBE) on hydrogen cleaned hexagonal silicon carbide (6H-SiC). The films were further heated to 740 °C and 650 °C under different oxygen environments in order to simulate processing conditions for subsequent functional oxide growth. The purpose of this study was to determine the effectiveness and stability of crystalline MgO films and the MgO/6H-SiC interface for subsequent heteroepitaxial deposition of multi-component, functional oxides by MBE or pulsed laser deposition processes. The stability of the MgO films and the MgO/6H-SiC interface was found to be dependent on substrate temperature and the presence of atomic oxygen. The MgO films and the MgO/6H-SiC interface are stable at temperatures up to 740 °C at 1.0 × 10−9 Torr for extended periods of time. While at temperatures below 400 °C exposure to the presence of active oxygen for extended periods of time has negligible impact, exposure to the presence of active oxygen for more than 5 min at 650 °C will degrade the MgO/6H-SiC interface. Concurrent etching and interface breakdown mechanisms are hypothesized to explain the observed effects. Further, barium titanate was deposited by MBE on bare 6H-SiC(0 0 0 1) and MgO(1 1 1)/6H-SiC(0 0 0 1) in order to evaluate the effectiveness of the MgO as a heteroepitaxial template layer for perovskite ferroelectrics.  相似文献   

2.
A high-quality ferromagnetic GaMnN (Mn=2.8 at%) film was deposited onto a GaN buffer/Al2O3(0 0 0 1) at 885 °C using the metal-organic chemical vapor deposition (MOCVD) process. The GaMnN film shows a highly c-axis-oriented hexagonal wurtzite structure, implying that Mn doping into GaN does not influence the crystallinity of the film. No Mn-related secondary phases were found in the GaMnN film by means of a high-flux X-ray diffraction analysis. The composition profiles of Ga, Mn, and N maintain nearly constant levels in depth profiles of the GaMnN film. The binding energy peak of the Mn 2p3/2 orbital was observed at 642.3 eV corresponding to the Mn (III) oxidation state of MnN. The presence of metallic Mn clusters (binding energy: 640.9 eV) in the GaMnN film was excluded. A broad yellow emission around 2.2 eV as well as a relatively weak near-band-edge emission at 3.39 eV was observed in a Mn-doped GaN film, while the undoped GaN film only shows a near-band-edge emission at 3.37 eV. The Mn-doped GaN film showed n-type semiconducting characteristics; the electron carrier concentration was 1.2×1021/cm3 and the resistivity was 3.9×10−3 Ω cm. Ferromagnetic hysteresis loops were observed at 300 K with a magnetic field parallel and perpendicular to the ab plane. The zero-field-cooled and field-cooled curves at temperatures ranging from 10 to 350 K strongly indicate that the GaMnN film is ferromagnetic at least up to 350 K. A coercive field of 250 Oe and effective magnetic moment of 0.0003 μB/Mn were obtained. The n-type semiconducting behavior plays a role in inducing ferromagnetism in the GaMnN film, and the observed ferromagnetism is appropriately explained by a double exchange mechanism.  相似文献   

3.
The growth of thin K films on Si(1 1 1)-7 × 7 has been investigated by selecting the input and output polarizations of second-harmonic generation (SHG) at room temperature (RT) and at an elevated temperature of 350 °C. The SH intensity at 350 °C showed a monotonic increase with K coverages up to a saturated level, where low energy electron diffraction (LEED) showed a 3 × 1 reconstructed structure. The additional deposition onto the K-saturated surface at 350 °C showed only a marginal change in the SH intensity. These variations are different from the multi-component variations up to 1 ML and orders of magnitude increase due to excitation of plasmons in the multilayers at RT. The variations of SHG during desorption of K at 350 °C showed a two-step decay with a marked shoulder which most likely corresponds to the saturation K coverage of the Si(1 1 1)-3 × 1-K surface. The dominant tensor elements contributing to SHG are also identified for each surface.  相似文献   

4.
X-ray diffraction (XRD) patterns revealed that the as-grown and annealed Al-doped ZnO (AZO) films grown on the n-Si (1 0 0) substrates were polycrystalline. Transmission electron microscopy (TEM) images showed that bright-contrast regions existed in the grain boundary, and high-resolution TEM (HRTEM) images showed that the bright-contrast regions with an amorphous phase were embedded in the ZnO grains. While the surface roughness of the AZO film annealed at 800 °C became smoother, those of the AZO films annealed at 900 and 1000 °C became rougher. XRD patterns, TEM images, selected-area electron diffraction patterns, HRTEM images, and atomic force microscopy (AFM) images showed that the crystallinity in the AZO thin films grown on the n-Si (1 0 0) substrates was enhanced resulting from the release in the strain energy for the AZO thin films due to thermal annealing at 800 °C. XRD patterns and AFM images show that the crystallinity of the AZO thin films annealed at 1000 °C deteriorated due to the formation of the amorphous phase in the ZnO thin films.  相似文献   

5.
The electrical and magnetic properties of thin iron (Fe) films have sparked significant scientific interest. Our interest, however, is in the fundamental interactions between light and matter. We have discovered a novel application for thin Fe films. These films are sources of terahertz (THz) radiation when stimulated by an incident laser pulse. After intense femtosecond pulse excitation by a Ti:sapphire laser, these films emit picosecond, broadband THz frequencies. The terahertz emission provides a direct measure of the induced ultrafast change in magnetization within the Fe film. The THz generation experiments and the growth of appropriate thin Fe films for these experiments are discussed. Several criteria are used to select the substrate and film growth conditions, including that the substrate must permit the epitaxial growth of a continuous, monocrystalline or single crystal film, yet must also be transparent to the emitted THz radiation. An Fe(0 0 1) film grown on the (0 0 1) surface of a magnesium oxide (MgO) substrate makes an ideal sample. The Fe films are grown by physical vapor deposition (PVD) in an ultrahigh vacuum (UHV) system. Low energy electron diffraction (LEED) and Auger electron spectroscopy (AES) are used to characterize the Fe(0 0 1) films. Two substrate surface preparation methods are investigated. Fe(0 0 1) films grown on MgO(0 0 1) substrates that are used as-received and films grown on MgO(0 0 1) substrates that have been UV/ozone-cleaned ex vacuo and annealed in vacuo produce the same results in the THz generation experiments. Either substrate preparation method permits the growth of samples suitable for the THz emission experiments.  相似文献   

6.
Thin gold films were fabricated by vacuum resistive deposition on the n-Ge (1 1 1) wafers. The films were annealed between 300 and 600 °C. These resulting thin films were then characterised using scanning electron microscopy (field emission and back-scattering modes), Rutherford back scattering spectroscopy and time of flight secondary ion mass spectroscopy (TOF-SIMS). For temperatures below the eutectic temperature the distribution of both the gold and the germanium on the surface are uniform. Above the eutectic temperature, the formation of gold rich islands on the surface of the Germanium were observed. These changes in the microstructure were found to correspond to changes in the electrical characteristics of the diodes.  相似文献   

7.
ZnO thin films with highly c-axis orientation have been fabricated on p-type Si(1 1 1) substrates at 400 °C by pulsed laser deposition (PLD) from a metallic Zn target with oxygen pressures between 0.1 and 0.7 mbar. Experimental results indicate that the films deposited at 0.3 and 0.5 mbar have better crystalline and optical quality and flatter surfaces than the films prepared at other pressures. The full width at half maximum (FWHM) of (0 0 0 2) diffraction peak decreases remarkably from 0.46 to 0.19° with increasing annealing temperature for the film prepared at 0.3 mbar. In photoluminescence (PL) spectra at room temperature, the annealed film at 700 °C exhibits a smaller ultraviolet (UV) peak FWHM of 108 meV than the as-grown film (119 meV). However, an enhanced deep-level emission is observed. Possible origins to above results are discussed.  相似文献   

8.
Growth of Ag islands under ultrahigh vacuum condition on air-exposed Si(0 0 1)-(2 × 1) surfaces has been investigated by in-situ reflection high energy electron diffraction (RHEED). A thin oxide is formed on Si via exposure of the clean Si(0 0 1)-(2 × 1) surface to air. Deposition of Ag on this oxidized surface was carried out at different substrate temperatures. Deposition at room temperature leads to the growth of randomly oriented Ag islands while well-oriented Ag islands, with (0 0 1)Ag||(0 0 1)Si, [1 1 0]Ag||[1 1 0]Si, have been found to grow at substrate temperatures of ≥350 °C in spite of the presence of the oxide layer between Ag islands and Si. The RHEED patterns show similarities with the case of Ag deposition on H-passivated Si(0 0 1) surfaces.  相似文献   

9.
GaN nanowires and nanorods have been successfully synthesized on Si(1 1 1) substrates by magnetron sputtering through ammoniating Ga2O3/V films at 900 °C in a quartz tube. X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and photoluminescence (PL) spectrum were carried out to characterize the structure, morphology, and photoluminescence properties of GaN sample. The results show that the GaN nanowires and nanorods with pure hexagonal wurtzite structure have good emission properties. The growth direction of nanostructures is perpendicular to the fringes of (1 0 1) plane. The growth mechanism is also briefly discussed.  相似文献   

10.
At room temperature deposited Ge films (thickness < 3 nm) homogeneously wet CaF2/Si(1 1 1). The films are crystalline but exhibit granular structure. The grain size decreases with increasing film thickness. The quality of the homogeneous films is improved by annealing up to 200 °C. Ge films break up into islands if higher annealing temperatures are used as demonstrated combining spot profile analysis low energy electron diffraction (SPA-LEED) with auger electron spectroscopy (AES). Annealing up to 600 °C reduces the lateral size of the Ge islands while the surface fraction covered by Ge islands is constant. The CaF2 film is decomposed if higher annealing temperatures are used. This effect is probably due to the formation of GeFx complexes which desorb at these temperatures.  相似文献   

11.
The surface state density distribution NSS(E) and surface Fermi level EFs position on a sequentially ultra-high vacuum-annealed n-InP(1 0 0) sample are investigated using rigorous computer analysis of dependences of the room temperature band-edge photoluminescence efficiency (YPL) on the photon flux density (Φ). We have found that the minimum density of a U-shaped NSS(E) distribution as well as the donor-like surface state density are reduced by one order of magnitude after the annealing at 250 and 300 °C. This can be assigned to the decrease in the disorder in the unintentionally formed InP native oxides. On the other hand, we demonstrate that the annealing simultaneously generates discrete surface states probably due to missing group V element (P) in the interface region which may account for electrical interface instabilities observed in InP-based devices. The results are discussed quantitatively and compared to other reports.  相似文献   

12.
Electrical characteristics of B atomic-layer doped Si epitaxial films on Si(1 0 0) formed by B atomic-layer formation on Si(1 0 0) at 180 °C and subsequent capping Si deposition at 500 °C using ultraclean low-pressure chemical vapor deposition were investigated. From evaluation results of carrier concentration in the films, by low-temperature SiH4 exposure at 180-300 °C before the capping Si deposition at 500 °C, 70% improvement of B electrical activity was confirmed, and it is suggested that lowering the temperatures for B atomic-layer formation on Si(1 0 0) as well as SiH4 exposure before the capping Si deposition is effective to suppress B clustering and to achieve B atomic-layer doped Si films with extremely high carrier concentration.  相似文献   

13.
Diamond film is an ultra-durable optical material with high thermal conductivity and good transmission in near-infrared and far-IR (8-14 μm) wavebands. CVD diamond is subjected to oxidation at temperature higher than 780 °C bared in air for 3 min, while it can be protected from oxidation for extended exposure in air at temperature up to 900 °C by a coating of aluminum nitride. Highly oriented AlN coatings were prepared for infrared windows on diamond films by reactive sputtering method and the average surface roughness (Ra) of the coatings was about 10 nm. The deposited films were characterized by X-ray diffraction (XRD) and atom force microscope (AFM). XRD confirmed the preferential orientation nature and AFM showed nanostructures. Optical properties of diamond films coated AlN thin film was investigated using infrared spectrum (IR) compared with that for as-grown diamond films.  相似文献   

14.
We investigated the initial Ge nucleation and Ge island growth on a Si(1 1 3) surface using low energy electron microscopy and low energy electron diffraction. The sample temperature was varied systematically between 380 °C and 590 °C. In this range, a strong temperature dependence of the island shape is observed. With increasing temperature the Ge islands are elongated in the direction. Simultaneously, the average island size increases while their density decreases. From the Arrhenius-like behaviour of the island density, a Ge adatom diffusion barrier height of about 0.53 eV is deduced.  相似文献   

15.
Pd-induced surface structures on Si(1 1 3) have been studied by scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS). In the initial process of the Pd adsorption below 0.10 ML, Pd silicide (Pd2Si) clusters are observed to form randomly on the surface. By increasing the Pd coverage to 0.10 ML, the clusters cover the entire surface, and an amorphous layer is formed. After annealing the Si(1 1 3)-Pd surface at 600 °C, various types of islands and chain protrusions appears. The agglomeration, coalescence and crystallization of these islands are observed by using high temperature (HT-) STM. It is also found by XPS that the islands correspond to Pd2Si structure. On the basis of these results, evolution of Pd-induced structures at high temperatures is in detail discussed.  相似文献   

16.
High density and ultrasmall size of Ge quantum dots (QDs) have been achieved directly on Si(0 0 1) (2 × 1) reconstruction surface. Their detailed morphology was observed by atomic force microscope (AFM) and shows that small pyramids, small domes, huts, and multi-headed large domes coexist in the film grown at 400 °C, while small domes and multi-headed large domes formed at 450 °C. Their low temperature photoluminescence (PL) showed that a very strong non-phonon (NP) peak with a large blue shift of 0.19 eV at 14 K, which can be attributed to their very high areal density, 5.2 × 1011 cm−2, and sub-10-nm mean size, 7.6 ± 2.3 nm.  相似文献   

17.
We propose a dry method of cleaning Ge(1 0 0) surfaces based on nitrogen plasma treatment. Our in situ Auger electron spectroscopy (AES) and low-energy electron diffraction (LEED) analyses demonstrate that surface contamination remaining after wet treatment was effectively removed by nitrogen radical irradiation at low substrate temperatures. The nitrogen plasma cleaned Ge(1 0 0) surface shows a well-ordered 2 × 1 reconstruction, which indicates the formation of a contamination-free Ge(1 0 0) surface with good crystallinity. We discuss the possible reaction mechanism considering how chemisorbed carbon impurities are removed by selective C-N bond formation and subsequent thermal desorption. These findings imply the advantage of plasma nitridation of Ge surfaces for fabricating nitride gate dielectrics, in which we can expect surface pre-cleaning at the initial stage of the plasma treatment.  相似文献   

18.
The structural and optical properties of ZnO films deposited on Si substrate following rapid thermal annealing (RTA) have been investigated by X-ray diffraction (XRD), atomic force microscopy (AFM), and photoluminescence (PL) measurements. After RTA treatment, the XRD spectra have shown an effective relaxation of the residual compressive stress, an increase of the intensity and narrowing of the full-width at half-maximum (FWHM) of the (0 0 2) diffraction peak of the as-grown ZnO film. AFM images show roughening of the film surface due to increase of grain size after RTA. The PL spectrum reveals a significant improvement in the UV luminescence of ZnO films following RTA at 800 °C for 1 min.  相似文献   

19.
In this work, silicon nanocrystals (Si-nc) embedded in a silicon-rich silicon oxide (SRSO) matrix doped with Er3+ ions for different erbium and silicon concentrations have been deposited by electron-cyclotron resonance plasma-enhanced chemical-vapor-deposition (ECR-PECVD) technique. Their optical properties have been investigated by photoluminescence (PL) and reflectance spectroscopy.Room temperature emission bands centered at ∼1.54 and at 0.75 μm have been obtained for all samples. The most intense emission band at ∼1.54 μm was obtained for samples with concentrations of 0.45% and 39% for erbium and silicon, respectively. Moreover, it has been found that the broad emission band centered at ∼0.75 μm for all samples shows a very strong interference pattern related to the a specific sample structure and a high sample quality.  相似文献   

20.
In this study, InP(1 0 0) surfaces were bombarded by argon ions in ultra high vacuum. Indium metallic droplets were created in well controlled quantities and played the role of precursors for the nitridation process. A glow discharge cell was used to produce a continuous plasma with a majority of N atomic species. X-ray photoelectron spectroscopy (XPS) studies indicated that the nitrogen combined with indium surface atoms to create InN thin films (two monolayers) on an In rich-InP(1 0 0) surface. This process occurred at low temperature: 250 °C. Synchrotron radiation photoemission (SR-XPS) studies of the valence band spectra, LEED and EELS measurements show an evolution of surface species and the effect of a 450 °C annealing of the InN/InP structures. The results reveal that annealing allows the crystallization of the thin InN layers, while the LEED pattern shows a (4 × 1) reconstruction. As a consequence, InN related structures in EELS and valence bands spectra are different before and after the annealing. According to SR-XPS measurements, the Fermi level is found to be pinned at 1.6 eV above the valence band maximum (VBM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号