首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanoscale multilayer CrN/ZrN coatings with bilayer thicknesses ranging from 11.7 to 66.7 nm were prepared by reactive magnetron sputtering techniques. The structure of the thin films was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). X-ray diffraction results showed that CrN individual layers presented a <1 1 1> preferred orientation in the multilayer coatings. The diffraction peaks of CrN shifted continuously to low diffraction angle with decreasing bilayer thickness. TEM observations showed that the multilayer did not form a superlattice structure instead of the coexistence of nanocrystalline CrN and ZrN layers. Columnar growth for all the coatings was observed by cross-sectional SEM. Nanoindentation tests showed that the multilayer coatings had almost a constant nanohardness of 29 GPa in spite of the variations of bilayer thickness. Pin-on-disk tests indicated that both the friction coefficients and wear rates increased when decreasing bilayer thickness. However, in comparison with the monolayer coating, the multilayer coatings exhibited excellent wear resistance.  相似文献   

2.
J.L. Mo 《Applied Surface Science》2009,255(17):7627-7634
CrN coatings were prepared by filtered cathodic vacuum arc (FCVA) technique. The influence of the deposition parameters (nitrogen partial pressure PN2, substrate bias voltage Vs and preheating of the substrate) on the structural, mechanical and tribological properties of the FCVA CrN coatings was investigated. Further, the FCVA CrN coating was compared in dry reciprocating sliding with commercial multi-arc ion plating (MAIP) CrN coating as to friction and wear properties. Profilometer, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDX) were used to evaluate the wear scars and the wear mechanisms were discussed. The results showed that the structural, mechanical and tribological properties of the FCVA CrN coatings were significantly dependent on the deposition parameters. The FCVA CrN coating deposited with PN2 of 0.1 Pa, Vs of −100 V and without preheating exhibited the optimal mechanical and tribological properties. The FCVA CrN coating exhibited much better anti-abrasive and anti-spalling properties than the MAIP CrN coating, which was resulted from significant reduction of macroparticles and pitting defects by the FCVA technique. The MAIP CrN coating suffered severe concentrated wear by a combination wear mechanisms of delamination, abrasive and oxidative wear when high normal load was applied, while for the FCVA CrN coating the wear mechanisms were ultra-mild abrasive and oxidative wear.  相似文献   

3.
The paper presents the effect of HPD laser treatment on the microstructure and selected properties of the PVD CrN, (Ti,Al) and Ti(C,N) coatings deposited onto hot-work tool steel substrates. The microstructure and surface topography of the investigated samples are characteristic of the diversified morphology connected with the applied laser beam power. Employment of laser beam at 0.7 kW power to the laser treatment of samples with Ti(C,N) coatings causes clear coating adhesion growth because of the diffusive processes induced by heat release. Because of the higher value of the (Ti,Al)N absorption coefficient one can state that the observed substrate materials change and finally coatings destruction in case of those samples is the most noticeable. The moderate effect of the laser beam treatment of the hot-work tool steel with the PVD coating was observed for CrN coatings. However, for laser beam power above 0.5 kW differences in the thermal expansion coefficients of the substrate materials and coatings generate coating crackings.  相似文献   

4.
CrN films with strong adhesion with the substrate have been fabricated on Ti6Al4V alloy using novel plasma immersion ion implantation and deposition (PIII&D) based on high power pulsed magnetron sputtering (HPPMS). A macro-particle free chromium plasma is generated by HPPMS while the samples are subjected to high voltage pulses to conduct PIII&D. The CrN coatings have a dense columnar structure and low surface roughness. The grains in the films have the face-center cubic (fcc) structure with the (2 0 0) preferred orientation. An excellent adhesion is achieved with a critical load up to 74.7 N. An implantation voltage of 18 kV yields a hardness of 18 GPa and better wear resistance and a low friction coefficient of 0.48 are achieved.  相似文献   

5.
CrSiN coatings were deposited on stainless steel (Grade: SA304) and silicon Si(1 0 0) substrates, with varying argon-nitrogen gas proportions and deposition temperature, using reactive magnetron sputtering technique in the present work. The influence of sputtering (Ar) and reactive gas proportions (N2) and temperature on the structural properties of the CrSiN coating was investigated. A small amount of silicon content (3.67 at.% Si) plays a crucial role in addition to the nitrogen content for the formation of different phases in the CrSiN coatings as observed in the present work. For example, the coating with comparatively low nitrogen content, 40% N2, during deposition, formed a crystalline structure consisting of nano-crystalline CrN which is separated by an amorphous SiN phase, as evident from X-ray diffraction (XRD) and transmission electron microscopy (TEM), respectively. The formation of CrN(1 1 1) and Cr2N(1 1 1) phases has occurred at 30% N2 with 3.67% Si content, which transformed in to CrN(1 1 1) and CrN(2 0 0) with increase in N2 content but with same Si content. The surface topography and morphology of the coatings were analyzed by atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM), respectively. A less columnar growth is observed in CrSiN coatings deposited at low argon content, Ar:N2 (20:80), and with 3.67 at.% Si in the coatings. However, it becomes dense with increase in nitrogen content and temperature. The XRD analysis showed that the intensity of a dominating peak (1 1 1) is decreasing from (80:20) to (60:40) argon:nitrogen environment. With a further increase of nitrogen content, from (60:40), in the sputtering gas mixture, to (40:60) argon-nitrogen, there is a sudden increase in (1 1 1) peak and above (40:60), the peak reduction rate is very slow than the previous one. The (1 1 1) and (2 0 0) peak intensity variations are very limited due to high nitrogen content, above 50%, and considerable amount of Si atoms, 3.67 at.%, present in the CrN coatings.  相似文献   

6.
TiMoN nano-multilayer hard coatings have been deposited using the closed field unbalanced magnetron sputter ion plating (CFUBMSIP) technique. In one set of experiments, standard DC power supplies were used on four magnetrons in the CFUBMSIP system (4DC magnetrons). The second set of experiments was also in the same magnetic field configuration of CFUBMSIP, but three magnetrons were as again powered with standard DC whilst one magnetron with Ti target was supplied by a high power impulse magnetron sputtering (HIPIMS) power generator (3DC + 1HIPIMS magnetrons). Two elemental titanium sputtering targets and two of molybdenum were used to produce the TiMoN nano-multilayer coatings. Analysis of the coatings was carried out to investigate the differences in terms of properties, compositions and microstructures of the coatings deposited by these two sets of experiments. It was found that the coatings deposited by both sets of the experiments exhibited similar properties of high hardness, good adhesion and exceptional wear resistance, with a lower sliding friction than more commonly used hard coatings including TiN, CrN, TiAlN, CrTiAlN etc. Although the initial TiN coating as formed at the coating-substrate interface using the process of 3DC + 1HIPIMS magnetrons appeared to show a less oriented microstructure in comparison with that of the coating produced by the process using 4DC magnetrons, the compositions and cross sectional microstructures of the bulk of the coatings did not show significant differences, as observed by the cross sectional Transmission Electron Microscopy microstructures of these two types of TiMoN coatings.  相似文献   

7.
Materials’ surface service property could be enhanced by transition metal nitride hard coatings due to their high hardness, wear and high temperature oxidation resistance, but the higher friction coefficient (0.4-0.9) of which aroused terrible abrasion. In this work, quinternary (Ti,Al,Si,C)N hard coating 3-4 μm was synthesized at 300 °C using plasma enhanced magnetron sputtering system. It was found that the coating's columnar crystals structure was restrained obviously with the increase of C content and a non-columnar crystals growth mode was indicated at the C content of 33.5 at.%. Both the XRD and TEM showed that the (Ti,Al,Si,C)N hard coatings had unique nanocomposite structures composed of nanocrystalline and amorphous nc-(Ti,Al)(C,N)/nc-AlN/a-Si3N4/a-Si/a-C. However, the coatings were still super hard with the highest hardness of 41 GPa in spite of the carbon incorporation. That a-C could facilitate the graphitization process during the friction process which could improve the coating's tribological performance. Therefore, that nanocomposite (Ti,Al,Si,C)N coatings with higher hardness (>36 GPa) and a lower friction coefficient (<0.2) could be synthesized and enhance the tribological performance and surface properties profoundly.  相似文献   

8.
Ni-Al2O3 composite coatings were prepared by using sediment co-deposition (SCD) technique and conventional electroplating (CEP) technique from Watt's type electrolyte without any additives. The microstructure, hardness, and wear resistance of resulting composites were investigated. The results show that the incorporation of nano-Al2O3 particles changes the surface morphology of nickel matrix. The preferential orientation is modified from (2 0 0) plane to (1 1 1) plane. The microhardness of Ni-Al2O3 composite coatings in the SCD technique are higher than that of the CEP technique and pure Ni coating and increase with the increasing of the nano-Al2O3 particles concentration in plating solution. The wear rate of the Ni-Al2O3 composite coating fabricated via SCD technique with 10 g/l nano-Al2O3 particles in plating bath is approximately one order of magnitude lower than that of pure Ni coating. Wear resistance for SCD obtained composite coatings is superior to that obtained by the CEP technique. The wear mechanism of pure Ni and nickel nano-Al2O3 composite coatings are adhesive wear and abrasive wear, respectively.  相似文献   

9.
TiN/TiAlN multilayer coatings were deposited on M2 high speed steel by a pulsed bias arc ion plating system. The effect of pulsed bias duty ratio on the microstructure, mechanical and wear properties was investigated. The amount of macroparticles reduced with the increase of the duty ratio. The surface roughness was 0.0858 μm at duty ratio of 50%. TiN/TiAlN multilayer coatings were crystallized with orientations in the (1 1 1), (2 0 0) (2 2 2) and (3 1 1) crystallographic planes and the microstructure strengthened at (1 1 1) preferred orientation. At duty ratio of 20%, the hardness of TiN/TiAlN multilayer coatings reached a maximum of 3004 HV, which was 3.2 times that of the substrate. The adhesion strength reached a maximum of 77 N at 50% duty ratio. Friction and wear analyses were carried out by pin-on-disc tester at room temperature. Compared with the substrate, all the specimens coated with TiN/TiAlN multilayer coatings exhibited better tribological properties.  相似文献   

10.
Peter Jur?i 《Applied Surface Science》2011,257(24):10581-10589
Samples made from Vanadis 6 PM ledeburitic tool steel were surface machined, ground, and mirror polished. They were heat treated and coated with CrN with and without Ag addition by reactive magnetron sputtering. The CrN film grew in a typically columnar manner. A small addition of 3% Ag did not lead to alterations in the growth mechanism. The hardness of the CrN coating was 16.79 ± 1.49 GPa compared to 15.97 ± 1.44 GPa for the coating with Ag addition. The Ag addition in the CrN improved adhesion of the coating, which can be attributed to the capability of CrAgN coating to accommodate higher deformation energy before failure. The CrAgN coating exhibited superior tribological properties at intermediate temperatures. Compared to pure CrN the friction coefficient is lowered to 70-75% when measured at 400 and 500 °C, respectively. This is reflected in a reduction in the volume wear, which was found to be three times lower for the coating containing Ag. Flexural strength decreased slightly for the CrN- or CrAgN-coated material compared to uncoated steel. However, as the decrease in flexural strength is very weak there is practically no risk of significant embrittlement of the investigated material due to the CrN coating with or without Ag addition.  相似文献   

11.
D. Dong 《Applied Surface Science》2009,255(15):7051-7055
Dispersible SiO2 nanoparticles were co-deposited with electroless Ni-P coating onto AISI-1045 steel substrates in the absence of any surfactants in plating bath. The resulting Ni-P/nano-SiO2 composite coatings were heat-treated for 1 h at 200 °C, 400 °C, and 600 °C, respectively. The hardness and wear resistance of the heat-treated composite coatings were measured. Moreover, the structural changes of the composite coatings before and after heat treatment were investigated by means of X-ray diffraction (XRD), while their elemental composition and morphology were analyzed using an energy dispersive spectrometer (EDS) and a scanning electron microscope (SEM). Results show that co-deposited SiO2 particles contributed to increase the hardness and wear resistance of electroless Ni-P coating, and the composite coating heat-treated at about 400 °C had the maximum hardness and wear resistance.  相似文献   

12.
Wear resistance of reactive plasma sprayed TiB2-TiC0.3N0.7 based composite coatings and the as-sprayed coating with laser surface treatment was investigated using plate-on-plate tests. Wear tests were performed at different normal loads and sliding speeds under dry sliding conditions in air. The surface morphologies of counterparts against as-sprayed and laser remelted coatings were investigated. The microstructure and chemical composition of wear debris and coatings were studied using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS), respectively. The results show that the wear resistance of the laser remelted coating is improved significantly due to their increased microhardness and reduced flaws. The primary wear mechanism of the remelted coating is oxidation wear and its minor wear mechanisms are grain abrasion and fatigue failure during the course of wear test. In contrast, the primary wear mechanism of the as-sprayed coating is grain abrasion at the low sliding speed (370 rpm) and fatigue failure at the high sliding speed (549 rpm). The oxidation wear mechanism is a minor contributor for the as-sprayed coating.  相似文献   

13.
利用脉冲磁控溅射法,以铝青铜合金(C63200)和硅片为基底,制作不同Ti含量的MoS2-Ti复合涂层。通过XRD、SEM、EDS、光学显微镜、多环境摩擦试验机等表征了涂层的结构成分和摩擦性能。结果表明:随Ti含量的增加,涂层致密度提升,S、Mo原子比上升。Ti的掺入使涂层由高度结晶态向非晶态转变。Ti含量增加,涂层摩擦磨损性能先上升再下降,常温真空下含3%Ti的涂层拥有稳定和低至0.015的摩擦系数,23%Ti的涂层失去润滑性。温度升高到400℃,涂层摩擦系数由0.015~0.04上升至0.07~0.1,含13%Ti的涂层高温真空下在800s后润滑失效。磨痕形貌显示,含3%Ti的涂层磨痕最窄,温度升高宽度增加不大,含13%Ti的涂层磨损严重,400℃真空环境下很快磨穿,纯MoS2和13%Ti涂层摩擦时发现大量磨粒和破碎磨屑。  相似文献   

14.
Ti-Al coatings with ∼14.7, 18.1, 25.2 and 29.7 at.% Al contents were fabricated on pure Ti substrate by laser cladding. The laser cladding Ti-Al coatings were analyzed with X-ray diffraction (XRD), scanning electron microscope (SEM) and X-ray energy dispersive spectroscopy (EDS). It was found that with the increase of Al content, the diffraction peaks shifted gradually to higher 2θ values. The laser cladding Ti-Al coatings with 14.7 and 18.1 at.% Al were composed of α-Ti and α2-Ti3Al phases, while those with 25.2 and 29.7 at.% Al were composed of α2-Ti3Al phase. With the increase of Al content, the cross-sectional hardness increased, while the fracture toughness decreased. For the laser cladding Ti-Al coatings, when the Al content was ≤18.1 at.%, the wear mechanism was adhesive wear and abrasive wear; while when the Al content ≥25.2 at.%, the wear mechanism was adhesive wear, abrasive wear and microfracture. With the increase of Al content, the wear rate of laser cladding Ti-Al coatings decreased under 1 N normal load, while the wear rate firstly decreased and then increased under a normal load of 3 N. Due to its optimized combination of high hardness and high fracture toughness, the laser cladding Ti-Al coating with 18.1 at.% Al showed the best anti-wear properties at higher normal load.  相似文献   

15.
Single-phase CrN and CrAlN coatings were deposited on silicon and mild steel substrates using a reactive DC magnetron sputtering system. The structural characterization of the coatings was done using X-ray diffraction (XRD). The XRD data showed that both the CrN and CrAlN coatings exhibited B1 NaCl structure with a prominent reflection along (2 0 0) plane. The bonding structure of the coatings was characterized by X-ray photoelectron spectroscopy and the surface morphology of the coatings was studied using atomic force microscopy. Subsequently, nanolayered CrN/CrAlN multilayer coatings with a total thickness of approximately 1 μm were deposited on silicon substrates at different modulation wavelengths (Λ). The XRD data showed that all the multilayer coatings were textured along {2 0 0}. The CrN/CrAlN multilayer coatings exhibited a maximum nanoindentation hardness of 3125 kg/mm2 at a modulation wavelength of 72 Å, whereas single layer CrN and CrAlN deposited under similar conditions exhibited hardness values of 2375 and 2800 kg/mm2, respectively. Structural changes as a result of heating of the multilayer coatings in air (400-800 °C) were characterized using XRD and micro-Raman spectroscopy. The XRD data showed that the multilayer coatings were stable up to a temperature of 650 °C and peaks pertaining to Cr2O3 started appearing at 700 °C. These results were confirmed by micro-Raman spectroscopy. Nanoindentation measurements performed on the heat-treated coatings revealed that the multilayer coatings retained hardness as high as 2250 kg/mm2 after annealing up to a temperature of 600 °C.  相似文献   

16.
Aluminum trioxide ceramic coatings with high hardness were grown on surfaces of 2024 Aluminum alloys by micro-plasma oxidation in an aluminate electrolytic solution, which highly improve wear-resisting properties of 2024 Aluminum alloys. However, ceramic coating surfaces are porous and very coarse, which is disadvantageous to practical applications. In this paper, in order to increase the density of the pores and decrease the friction coefficient of the ceramic coatings, different concentrations (2-8 g/l) of graphite were added into the aluminate electrolytic solution. The thickness and hardness of the produced ceramic coatings were measured by HVS-100 micro-hardness tester and thickness tester. The friction coefficient of the coatings was studied by a frictionometer. The phase composition and surface morphology of the MPO films were evaluated through X-ray diffraction (XRD) and scanning electron microscope (SEM). The results show that the thickness of the ceramic coating is about 22 ± 1 μm, surfaces of the ceramic coatings are very uniform and that the coatings consist of mainly aluminum trioxides and a certain amount of graphite, which indicates graphite have entered the ceramic films during the micro-plasma oxidation process. Wear properties results show that the friction coefficient of the ceramic coatings decreased when graphite entered the ceramic films. When the concentration of graphite is 4 g/l, the wear properties of the coatings is the most excellent and the friction coefficient decreases to the lowest, that is 0.09.  相似文献   

17.
Hydroxyapatite (HA) coatings with different surface roughnesses were deposited on a Ti substrate via aerosol deposition (AD). The effect of the surface roughness on the cellular response to the coating was investigated. The surface roughness was controlled by manipulating the particle size distribution of the raw powder used for deposition and by varying the coating thickness. The coatings obtained from the 1100 °C-heated powder exhibited relatively smooth surfaces, whereas those fabricated using the 1050 °C-heated powder had network-structured rough surfaces with large surface areas and were superior in terms of their adhesion strengths and in vitro cell responses. The surface roughness (Ra) values of the coatings fabricated using the 1050 °C-heated powder increased from approximately 0.65 to 1.03 μm as the coating thickness increased to 10 μm. The coatings with a rough surface had good adhesion to the Ti substrate, exhibiting high adhesion strengths ranging from 37.6 to 29.5 MPa, depending on the coating thickness. The optimum biological performance was observed for the 5 μm-thick HA coating with an intermediate surface roughness value of 0.82 μm.  相似文献   

18.
Semiconductor IC packaging molding dies require wear resistance, corrosion resistance and non-sticking (with a low surface free energy). The molding releasing capability and performance are directly associated with the surface free energy between the coating and product material. The serious sticking problem reduces productivity and reliability. Depositing TiN, TiMoS, ZrN, CrC, CrN, NiCr, NiCrN, CrTiAlN and CrNiTiAlN coatings using closed field unbalanced magnetron sputter ion plating, and characterizing their surface free energy are the main object in developing a non-stick coating system for semiconductor IC molding tools. The contact angle of water, diiodomethane and ethylene glycol on the coated surfaces were measured at temperature in 20 °C using a Dataphysics OCA-20 contact angle analyzer. The surface free energy of the coatings and their components (dispersion and polar) were calculated using the Owens-Wendt geometric mean approach. The surface roughness was investigated by atomic force microscopy (AFM). The adhesion force of these coatings was measured using direct tensile pull-off test apparatus. The experimental results showed that NiCrN, CrN and NiCrTiAlN coatings outperformed TiN, ZrN, NiCr, CiTiAlN, CrC and TiMoS coatings in terms of non-sticking, and thus have the potential as working layers for injection molding industrial equipment, especially in semiconductor IC packaging molding applications.  相似文献   

19.
Ni-Co/nano-Al2O3 (Ni-Co/Al2O3) composite coatings were prepared under pulse reversal current (PRC) and direct current (dc) methods respectively. The microstructure of coatings was characterized by means of XRD, SEM and TEM. Both the Ni-Co alloy and composite coatings exhibit single phase of Ni matrix with face-centered cubic (fcc) crystal structure, and the crystal orientation of the Ni-Co/Al2O3 composite coating was transformed from crystal face (2 0 0) to (1 1 1) compared with alloy coatings. The hardness, anti-wear property and macro-residual stress were also investigated. The results showed that the microstructure and performance of the coatings were greatly affected by Al2O3 content and the electrodeposition methods. With the increasing of Al2O3 content, the hardness and wear resistance of the composite coatings enhanced. The PRC composite coatings exhibited compact surface, high hardness, better wear resistance and lower macro-residual stress compared with that of the dc composite coatings.  相似文献   

20.
Two types of PEO coatings, one consisting of magnesium oxide (MgO) and the other comprising zirconium oxide (ZrO2) as the main phase composition were produced on AM50 magnesium alloy from alkaline and acidic electrolytes, respectively. The ZrO2 coating was found to be spongy and thicker with a higher roughness, whilst the relatively more compact MgO coating was having contrasting features. In the dry sliding oscillating wear tests under two different loads viz., 2 N and 5 N, the ZrO2 coating exhibited a very poor wear resistance. The MgO coating showed an excellent resistance to sliding wear under 2 N load; however, the load bearing capacity of the coating was found to be insufficient to resist the wear damage under 5 N load. The higher specific wear rates of the MgO coating under 5 N load and that of the ZrO2 coating under 2 N and 5 N loads were attributed to the poor load bearing capacity and a three-body-abrasive wear mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号