首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We theoretically investigate spin transport in the elliptical ring and the circular ring with Rashba spin–orbit interaction.It is shown that when Rashba spin–orbit interaction is relatively weak, a single circular ring can not realize spin flip, however an elliptical ring may work as a spin-inverter at this time, and the influence of the defect of the geometry is not obvious.Howerver if a giant Rashba spin–orbit interaction strength has been obtained, a circular ring can work as a spin-inverter with a high stability.  相似文献   

2.
The spin–orbit interactions (SOI) for the single and double ring-shaped oscillator potentials are studied as an energy correction to the Schrödinger equation. We find that the degeneracy for the energy levels with angular quantum number m=0m=0 keeps invariant in the case of the SOI. The degeneracy is still 2 for single ring-shaped potential and 4 for double ring-shaped potential. However, for the energy levels with angular quantum number m≠0m0 the degeneracy is reduced from original 4 for the single ring-shaped potential and 8 for the double ring-shaped potential to 2. That is, their energy levels in the case of the SOI are split to 2 (single) and 4 (double) sublevels. There exists an accidental degeneracy for the cases |m|=2,3,4,…|m|=2,3,4,. We note that around the critical value b0b0, the energy levels are reversed.   We also discuss some special cases for η=2,3,4,5,6,…η=2,3,4,5,6,, and the b=0,c>0b=0,c>0. It should be pointed out that the parameter b0b0 is relevant for the angular part parameter bb in the single and double ring-shaped potentials and it makes the energy levels changed from positive to negative, but the parameter cc corresponds to the angular part parameter in double ring-shaped potential and the ηη is related to it. This model can be useful for investigations of axial symmetric subjects like the ring-shaped molecules or related problems and may also be easily extended to a many-electron theory.  相似文献   

3.
We study numerically the effects of an extrinsic spin–orbit interaction on the model of electrons in n-doped semiconductors of Matsubara and Toyozawa (MT). We focus on the analysis of the density of states (DOS) and the inverse participation ratio (IPR) of the spin–orbit perturbed states in the MT set of energy eigenstates in order to characterize the eigenstates with respect to their extended or localized nature. The finite sizes that we are able to consider necessitate an enhancement of the spin–orbit coupling strength in order to obtain a meaningful perturbation. The IPR and DOS are then studied as a function of the enhancement parameter.  相似文献   

4.
Experiments on semiconductor quantum dot systems have demonstrated the coupling between electron spins in quantum dots and spins localized in the neighboring area of the dots. Here we show that in a magnetic field the electrical current flowing through a single quantum dot tunnel-coupled to a spin displays a dip at the singlet–triplet anticrossing point which appears due to the spin–orbit interaction. We specify the requirements for which the current dip is formed and examine the properties of the dip for various system parameters, such as energy detuning, spin–orbit interaction strength, and coupling to leads. We suggest a parameter range in which the dip could be probed.  相似文献   

5.
The evolution of two-component cold atoms on a ring with spin–orbit coupling has been studied analytically for the case with N noninteracting particles.Then,the effect of interaction is evaluated numerically via a two-body system.Two cases are considered:(i) Starting from a ground state the evolution is induced by a sudden change of the laser field,and(ii)the evolution starting from a superposition state.Oscillating persistent spin-currents have been found.A set of formulae have been derived to describe the period and amplitude of the oscillation.Based on these formulae the oscillation can be well controlled via adjusting the parameters of the laser beams.In particular,it is predicted that movable stripes might emerge on the ring.  相似文献   

6.
We studied spin-dependent transport in monolayer graphene with a spin–orbit barrier, a narrow strip in which the spin–orbit interaction is not zero. When the Fermi energy is between the two spin-split bands, the structure can be used to generate spin-polarized current. For a strong enough Rashba strength, a thick enough barrier or a low enough Fermi energy, highly spin-polarized current is generated (polarization ∼0.7–0.850.70.85). Under these conditions, the spin direction of the transmitted electron is approximately perpendicular to the direction of motion. This shows that graphene spin–orbit nanostructures are useful for the development of graphene spintronic devices.  相似文献   

7.
In the present paper, we have theoretically investigated thermoelectric transport properties of armchair and zigzag graphene nanoribbons with Rashba spin–orbit interaction, as well as dephasing scattering processes by applying the nonequilibrium Green function method. Behaviors of electronic and thermal currents, as well as thermoelectric coefficients are studied. It is found that both electronic and thermal currents decrease, and thermoelectric properties been suppressed, with increasing strength of Rashba spin–orbit interaction. We have also studied spin split and spin density induced by Rashba spin–orbit interaction in the graphene nanoribbons.  相似文献   

8.
Spin-wave excitation plays important roles in the investigation of the magnetic phases. In this paper, we study the spin-wave excitation spectra of two-component Bose gases with spin–orbit coupling in a deep square optical lattice using the spin-wave theory. We find that, while the excitation spectrum of the vortex crystal phase is gapless with a linear dispersion in the vicinity of the minimum point, the spectra of the commensurate spiral spin phase and the skyrmion crystal phase are gapped. Significantly, the spin fluctuations strongly destabilize the classical ground state of the skyrmion phase with the appearance of an imaginary part in the eigenfrequencies of spin excitations. Such features of the spin excitation spectra provide further insights into the exotic spin phases.  相似文献   

9.
10.
11.
蓝杰钦  徐宏亮 《中国物理 B》2012,21(8):84501-084501
Spin polarization phenomenon in lepton circular accelerators had been known for many years. It gives new approach for physicists to study about spin feature of fundamental particles and dynamics of spin-orbit coupling, such as spin resonances. We use numerical simulation to study the feature of spin under the modulation of orbital motion in electron storage ring. The various cases of depolarization due to spin-orbit coupling through emitting photon and misalignment of magnets in the ring are discussed.  相似文献   

12.
Interaction between Rydberg atoms can be used to control the properties of interatomic interaction in ultracold gases by weakly dressing the atoms with a Rydberg state. Here we investigate the effect of the Rydberg-dressing interaction on the ground-state properties of a Bose–Einstein condensate imposed by Raman-induced spin–orbit coupling. We find that,in the case of SU(2)-invariant s-wave interactions, the gas is only in the plane-wave phase and the zero-momentum phase is absent. In particular, we also predict an unexpected magnetic stripe phase composed of two plane-wave components with unequal weight when s-wave interactions are non-symmetric, which originates from the Rydberg-dressing interaction.  相似文献   

13.
A knowledge of the potential energy of a point charge outside a planar surface is important for understanding many charge transfer processes and surface spectroscopies. Whilst the ‘theory of images’ of classical electrostatics can be used to derive this potential, the result is valid only for static charges far from the surface. In this paper we describe recent attempts to consider moving charges near real surfaces, with particular reference to surfaces with dielectric overlayers, and we review experimental studies of the effects of the image force.  相似文献   

14.
The equation of state is investigated for a thin superconducting film in a longitudinal magnetic field and with strong spin-orbit interaction at the critical point. As a first step, the state with the maximal value of the magnetic field for a given value of spin–orbit interaction at T = 0 is chosen. This state is investigated in the low-temperature region. The temperature contribution to the equation of state is weakly singular.  相似文献   

15.
In this study, a detailed investigation of the nonlinear optical properties such as optical absorption and refractive index change associated with intersubband transitions in a three-electron quantum dot in two dimensions in the presence of the Rashba spin–orbit interaction has been carried out. We present the exact wave functions and energy levels of the system. Numerical results on typical GaAs/AlGaAs materials show that the decrease of the quantum dot radius blueshifts and amplifies the absorption coefficients as well as the refractive index changes, as expected. Additionally, an increase of the optical intensity and relaxation time considerably changes the absorption coefficients and the refractive index changes.  相似文献   

16.
In this paper, the influence of impurity parameters on the electron energy spectrum and absorption coefficients in a parabolic quantum dot and in the presence of Rashba spin–orbit interaction subjected to a perpendicular magnetic field is studied. The impurity potential is approximated by a Gaussian form. We have shown that in the both cases of a repulsive and attractive Gaussian impurity, the absorption coefficients are strongly affected by the decay length. These coefficients show blue (red) shift as the decay length of repulsive (attractive) impurity is increased. The dependence of the absorption coefficients on the impurity position is also examined for different polarizations. Our results show that the absorption coefficient has local maximum (minimum) for a given value of impurity position for Y-polarized (X-polarized) light.  相似文献   

17.
We present a theoretical study of spin–orbit interaction effects on single wall carbon nanotubes and curved graphene nanoribbons by means of a realistic multiorbital tight-binding model, which takes into account the full symmetry of the honeycomb lattice. Several effects relevant to spin–orbit interaction, namely, the importance of chirality, curvature, and a family-dependent anisotropic conduction and valence band splitting are identified. We show that chiral nanotubes and nanoribbons exhibit spin-split states. Curvature-induced orbital hybridization is crucial to understand the experimentally observed anisotropic spin–orbit splittings in carbon nanotubes. In fact, spin–orbit interaction is important in curved graphene nanoribbons, since the induced spin-splitting on the edge states gives rise to spin-filtered states.  相似文献   

18.
M Bagheri Harouni 《中国物理 B》2021,30(9):90301-090301
Quantum speed limit and entanglement of a two-spin Heisenberg XYZ system in an inhomogeneous external magnetic field are investigated. The physical system studied is the excess electron spin in two adjacent quantum dots. The influences of magnetic field inhomogeneity as well as spin–orbit coupling are studied. Moreover, the spin interaction with surrounding magnetic environment is investigated as a non-Markovian process. The spin–orbit interaction provides two important features: the formation of entanglement when two qubits are initially in a separated state and the degradation and rebirth of the entanglement.  相似文献   

19.
The dependence of the width of the spectral function of electrons and holes on the wavevector and excitation energy in a 2D electron system with spin-orbit interaction caused by structural inversion asymmetry is analyzed in the G 0 W 0 approximation. It is shown that an additional (relative to the generation of electron-hole pairs) channel of hole decay due to emission of a plasmon appears in the case of low electron density. Noticeable spin asymmetry of the spectral function width appears in the region of electron excitations.  相似文献   

20.
We establish a general formalism of the bulk spin polarization (BSP) and the current-based spin polarization (CSP) for mesoscopic ferromagnetic and spin–orbit interaction (SOI) semiconducting systems. Based on this formalism, we reveal the basic properties of BSP and CSP and their relationships. The BSP describes the intrinsic spin polarized properties of devices. The CSP depends on both intrinsic parameters of device and the incident current. For the non-spin-polarized incident current with the in-phase spin-phase coherence, CSP equals to BSP. We give analytically the BSP and CSP of several typical nanodevice models, ferromagnetic nanowire, Rashba nanowire and rings. These results provide basic physical behaviors of BSP and CSP and their relationships.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号