首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A cluster problem is analyzed as an example demonstrating that the observed three-mode behavior of spin-triplet excitations in YbB12 can be described by the asymmetric Anderson model with insulating singlet ground state. In the case of an infinite system, it is argued that the behavior of the f subsystem can be analyzed by using an effective Hamiltonian ? J with direct antiferromagnetic f-f exchange interaction. The spin excitation spectrum is shown to have a minimum at the antiferromagnetic vector, as observed experimentally. A distinctive feature of the analysis is the use of singlet and triplet basis operators.  相似文献   

2.
Neutron spectroscopy results are presented for electron-doped YbB12-based systems. Electrondoping effects were obtained through the partial substitution of Yb for four-valence Zr, and through the introduction of a small amount of carbon in the boron sublattice of a YbB12 condo insulator. The different character of the original YbB12 gap-type magnetic-excitation-spectrum changes was observed.  相似文献   

3.
4.
The temperature dependence of the ac magnetic susceptibility of a single-crystal mixed rare-earth garnet Er2HoAl5O12 has been investigated within the range from 1.8 to 300 K in a zero constant field and in applied bias fields of up to 9 T. In the absence of a constant magnetic field the magnetic susceptibility followed the Curie–Weiss law. The application of a constant magnetic field caused a magnetic phase transition, the temperature of which increased with increasing magnetic field. The temperature of the maximum of the ac magnetic susceptibility, which is a characteristic of the phase transition, did not show a noticeable dependence on the frequency of the alternating magnetic field.  相似文献   

5.
The Y(1 ? x Ce x Ba2Cu3O7 system with low cerium concentrations has been synthesized. The cerium solubility limit measured using x-ray powder diffraction analysis is about 2.4 at. %. The temperature dependences of the magnetization M(T) are measured for samples cooled in a magnetic field (FC) and in a zero field (ZFC). The difference between the magnetizations M ZFC-M FC at 77.4 K, which is proportional to the pinning potential, passes through a maximum at x = 0.0156. This concentration corresponds to the average distance (equal to eight lattice constants) between the impurity ions in the plane of the rare-earth elements, which is comparable to the diameter of Abrikosov vortices in YBa2Cu3O7.  相似文献   

6.
The temperature and magnetic field dependences of the static magnetization of the polycrystalline rare-earth cobaltites GdCoO3 and SmCoO3 have been measured. It is shown that, below room temperature, the magnetization of both compounds derives primarily from the rare-earth ion paramagnetism. The GdCoO3 and SmCoO3 compounds have been found to differ substantially in magnetic behavior, which can be traced to differences in their electronic shell structures. The magnetic behavior of GdCoO3 is close to that of an array of free Gd3+ ions, whereas in SmCoO3 the deviation from the free-ion properties is very large because of the Sm3+ ground state being crystal-field split. Van Vleck magnetic susceptibility measurements of SmCoO3 suggest that the splitting is ~10 K.  相似文献   

7.
The effect of structural defects in cobalt and oxygen sublattices with the constant average oxidation level 3+ of all cobalt ions on the magnetic properties of the EuBaCo1.90O5.36 single crystal has been studied. The magnetic properties of the single crystal and the polycrystalline sample of the corresponding composition are compared in the range T = 200–650 K. The results show that the cobalt-deficient EuBaCo2–xO5.5–δ samples demonstrate a three-dimensional XY ferromagnetic ordering of magnetic sublattices. The values of the effective magnetic moment at T > 480 K indicate the existence of the IS and HS states of Co3+ ions. The large difference of values of μeff of the EuBaCo1.90O5.36 single crystal and polycrystal can be due to that the magnetic ion spins lie in plane ab. The magnetic field directed along plane ab substantially influences the magnetic ordering at T < 300 K.  相似文献   

8.
The specific heat and magnetic susceptibility of a sample of YBa2Cu3O7?δ (YBCO) was measured for 0≤δ≤0.85, 0.8≤T≤120K, and H=0, 3, 5, 7, 9T. The data show the existence of both S=1/2 and S=2 paramagnetic centers, consistent with EPR results. The δ dependences of their concentrations and of other parameters are reported.  相似文献   

9.
The photomagnetic behavior of single-crystal yttrium iron garnet Y3Fe5O12 doped with iridium, substituting the cation of iron in the octahedron, is investigated upon illumination at room temperature. It is shown that the photomagnetic properties of Y3Fe4.97Ir0.03O12 samples are to a large degree related to the impurity distortion of the sublattice of iron atoms in octahedral coordination, rather than solely to the possible presence of Fe4+ cations, which are inactive at room temperature and may even be lacking in single crystals doped with iridium. It is concluded that the photoinduced change in the magnetic parameters of this material is determined by the location of impurity cations and increased surface imperfection of the material. The reasons for the different photoactive behavior of this promising material for spintronics, that is, a singlecrystal yttrium iron garnet, are summarized.  相似文献   

10.
Measurements of magnetic and transport properties were performed on needle-shaped single crystals of Ce12Fe57.5As41 and La12Fe57.5As41. The availability of a complete set of data enabled a side-by-side comparison between these two rare earth compounds. Both compounds exhibited multiple magnetic orders within 2–300 K and metamagnetic transitions at various fields. Ferromagnetic transitions with Curie temperatures of 100 and 125 K were found for Ce12Fe57.5As41 and La12Fe57.5As41, respectively, followed by antiferromagnetic type spin reorientations near Curie temperatures. The magnetic properties underwent complex evolution in the magnetic field for both compounds. An antiferromagnetic phase transition at about 60 K and 0.2 T was observed merely for Ce12Fe57.5As41. The field-induced magnetic phase transition occurred from antiferromagnetic to ferromagnetic structure. A strong magnetocrystalline anisotropy was evident from magnetization measurements of Ce12Fe57.5As41. A temperature-field phase diagram was present for these two rare earth systems. In addition, a logarithmic temperature dependence of electrical resistivity was observed in the two compounds within a large temperature range of 150–300 K, which is rarely found in 3D-based compounds. It may be related to Kondo scattering described by independent localized Fe 3d moments interacting with conduction electrons.  相似文献   

11.
The Zeeman effect in the 7 F 65 D 4 absorption band of the Tb3+ ion in the paramagnetic garnets Tb3Ga5O12 and Tb3Al5O12 was studied. The field dependences of the Zeeman splitting of some absorption lines are found to exhibit unusual behavior: as the magnetic field increases, the band splitting decreases rather than increases. Symmetry analysis relates these lines to 4f → 4f electron transitions of the doublet-quasi-doublet or quasi-doublet-doublet type, for which the field dependences of the splitting differ radically from the well-known field dependences of the Zeeman splitting for quasi-doublet-quasi-doublet or quasi-doublet-singlet transitions in a longitudinal magnetic field.  相似文献   

12.
The magnetic phase diagram of the CeAl2 magnetic Kondo lattice was studied using microwave magnetoabsorption spectroscopy at frequencies of 37–118 GHz, temperatures of 1.8–4.6 K, and magnetic fields of up to 70 kOe. The observed anomalies in magnetoabsorption, when combined with the change in the carrier scattering pattern in (established in galvanomagnetic measurements) CeAl2 near H*≈35 kOe at liquid-helium temperatures, suggest that this compound undergoes a sequence of magnetic transitions accompanied by strong spin fluctuations. The nature of the magnetic phases and the mechanisms driving the phase transformations in CeAl2 are discussed.  相似文献   

13.
Resonance modes that are due to magnetic excitations in the exchange-coupled subsystems of rare-earth ions (R = Nd3+, Sm3+, and Gd3+) and Fe3+ ions have been detected in submillimeter transmission spectra (0.1–0.6 THz) of RFe3(BO3)4 iron borate-multiferroic single crystals. The strong interaction between spin oscillations of the Fe and R subsystems has been revealed, which determines the behavior of the modes depending on the anisotropy of the exchange splitting of the ground doublet of the R ion. It has been shown that the intensities of coupled modes (contributions to the magnetic permeability) depend strongly on the difference between the g factors of Fe and R ions. This dependence makes it possible to determine the sign of the latter g factor. In particular, a noticeable intensity of exchange Nd modes in NdFe3(BO3)4 is due to an increase in their contribution at g ⊥, ‖Nd < 0, while in GdFe3(BO3)4 with g Gdg Fe ≈ 2, the Fe and Gd contributions compensate each other and the exchange (Gd) mode is not observed. In spite of the weak interaction of Sm ions with the magnetic field, SmFe3(BO3)4 exhibits resonance modes, which are attributed to the excitation of Sm ions through the Fe subsystem.  相似文献   

14.
The Ru-Ru spin-singlet formation in La2 ? x L n x RuO5 (Ln = Pr, Nd, Sm, Gd, Dy) was investigated by measurements of the specific heat and magnetic susceptibility. After subtraction of the lattice contribution from the specific heat (C p ), similar excess entropy values were obtained for all compounds. These entropies can be explained by the formation of antiferromagnetic Ru-spin dimers at low temperatures and provide a lower estimate for the intradimer exchange strength. Pronounced changes in the transition temperatures and a broadening of the corresponding peak in C p were observed. These changes depend on the rare-earth element and are due to local structural changes and heterogeneities caused by the substitution. The magnetic susceptibilities can be described by the sum of a rare-earth paramagnetic moment and the susceptibility of the unsubstituted La2RuO5. Density functional theory (DFT) calculations were performed for various compounds to investigate the origin of the magnetic transition and the relationship between structural changes and the spin-dimerization temperature. The combination of the present results with previous structural investigations supports the model of a spin-pairing of the Ru moments which occurs as a reason of the structural phase transition in La2 ? x L n x RuO5.  相似文献   

15.
The effect of atomic disordering on the optical properties of Pt74.1Fe25.9 alloy, whose stoichiometry is close to that of Pt3Fe, has been investigated. The optical constants of ordered and plastically deformed alloys, which are, respectively, in the paramagnetic and ferromagnetic states, have been measured by the polarimetric method. The frequency dispersions of the permittivity, optical conductivity, and reflectivity, as well as the microscopic characteristics of conduction electrons (plasma and relaxation frequencies), have been calculated. The energy dependences of the optical conductivity are compared to the calculated energy-band structure of atomically ordered and disordered Pt3Fe compounds.  相似文献   

16.
The influence of a weak (below 50 Oe) constant magnetic field on a quadrupole spin-echo envelope was studied for an undoped single crystal Bi4Ge3O12, in which local magnetic fields on the order of 20–30 G were previously found, as well as for single Bi4Ge3O12 crystals doped with the atoms of transition and rare-earth elements. In all of these cases, the spin-echo envelopes were strongly influenced. A considerable increase in the nuclear spin-spin relaxation time T 2 was observed for the undoped sample upon the switching of weak external magnetic fields. For the doped samples, the spin-echo envelope decay became much slower already in the zero field. The external magnetic fields exhibited a markedly weaker influence on the spin-echo envelope for the doped samples. The text was submitted by the authors in English.  相似文献   

17.
SrDy x Fe12?x O19 (x ≤ 0.08) nanofibers have been synthesized by the electrospinning method followed by calcinations process. The partial substitution of rare earth ions Dy3+ (10.5 μ B of magnetic moments) mainly occupying 12k sublattice sites in the SrFe12O19 crystal structure is investigated and discussed in this work. An enhanced coercivity of 7155 Oe has been obtained when the doped content reached to 0.08 at a relative low calcination temperature of 800 °C. As a result, we believe the synthesized SrDy x Fe12?x O19 nanofibers can potentially be useful in high-density recording media as well as permanent magnets.  相似文献   

18.
The electronic structure and optical properties of the hexagonal intermetallic compound Gd5Si3 are investigated. The spin-polarization calculation of the band spectrum is performed in the local spin density approximation, taking account for the strong electron correlations in the 4 f shell of a Gd ion (LSDA + U method). Optical constants of the compound in the wavelength range of 0.22–15 μm are determined by the ellipsometry technique and some spectral characteristics are calculated. The frequency dependence of optical conductivity in the light quantum absorption region is analyzed on the basis of the calculated electron density of states.  相似文献   

19.
The low-temperature behavior of the magnetic susceptibility of the V15 low-spin cluster in ultrastrong magnetic fields of up to 550 T was studied. Ultrastrong magnetic fields were generated by an MK-1 magnetic explosion generator. Anomalies in the susceptibility were found to exist in fields B1=200 T and B2=350 T. It is concluded that these anomalies indicate the initial phase of a field-induced transformation of the cluster magnetic structure from quasi-ferrimagnetic to ferromagnetic. This transformation occurs by discrete quantum jumps at low temperatures. The experimental data are compared with theory.  相似文献   

20.
The luminescence of excitons and antisite defects (ADs) was investigated, as well as the specific features of the excitation energy transfer from excitons and ADs to the activator (Ce3+ ion) in phosphors based on Lu3Al5O12:Ce (LuAG:Ce) single crystals and single-crystalline films, which are characterized by significantly different concentrations of ADs of the Lu Al 3+ type and vacancy-type defects. The luminescence band with λmax = 249 nm in LuAG:Ce single-crystal films is due to the luminescence of self-trapped excitons (STEs) at regular sites of the garnet lattice. The excited state of STEs is characterized by the presence of two radiative levels with significantly different transition probabilities, which is responsible for the presence of two excitation bands with λmax = 160 and 167 nm and two components (fast and slow) in the decay kinetics of the STE luminescence. In LuAG:Ce single crystals, in contrast to single-crystal films, the radiative relaxation of STEs in the band with λmax = 253.5 nm occurs predominantly near Lu Al 3+ ADs. The intrinsic luminescence of LuAG:Ce single crystals at 300 K in the band with λmax = 325 nm (τ = 540 ns), which is excited in the band with λmax = 175 nm, is due to the radiative recombination of electrons with holes localized near Lu Al 3+ ADs. In LuAG:Ce single crystals, the excitation of the luminescence of Ce3+ ions occurs to a large extent with the participation of ADs. As a result, slow components are present in the luminescence decay of Ce3+ ions in LuAG:Ce single crystals due to both the reabsorption of the UV AD luminescence in the 4f-5d absorption band of Ce3+ ions with λmax = 340 nm and the intermediate localization of charge carriers at ADs and vacancy-type defects. In contrast to single crystals, in phosphors based on LuAG:Ce single-crystal films, the contribution of slow components to the luminescence of Ce3+ ions is significantly smaller due to a low concentration of these types of defects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号