首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The products of base-catalyzed liquid-phase hydrolysis of lignin depend markedly on the operating conditions. By varying temperature, pressure, catalyst concentration, and residence time, the yield of monomers and oligomers from depolymerized lignin can be adjusted. It is shown that monomers of phenolic derivatives are the only primary products of base-catalyzed hydrolysis and that oligomers form as secondary products. Oligomerization and polymerization of these highly reactive products, however, limit the amount of obtainable product oil containing low-molecular-weight phenolic products. Therefore, inhibition of concurrent oligomerization and polymerization reactions during hydrothermal lignin depolymerization is important to enhance product yields. Applying boric acid as a capping agent to suppress addition and condensation reactions of initially formed products is presented as a successful approach in this direction. Combination of base-catalyzed lignin hydrolysis with addition of boric acid protecting agent shifts the product distribution to lower molecular weight compounds and increases product yields beyond 85%.  相似文献   

2.
We report the complete ethanolysis of Kraft lignin over an α‐MoC1?x/AC catalyst in pure ethanol at 280 °C to give high‐value chemicals of low molecular weight with a maximum overall yield of the 25 most abundant liquid products (LP25) of 1.64 g per gram of lignin. The LP25 products consisted of C6–C10 esters, alcohols, arenes, phenols, and benzyl alcohols with an overall heating value of 36.5 MJ kg?1. C6 alcohols and C8 esters predominated and accounted for 82 wt % of the LP25 products. No oligomers or char were formed in the process. With our catalyst, ethanol is the only effective solvent for the reaction. Supercritical ethanol on its own degrades Kraft lignin into a mixture of small molecules and molecular fragments of intermediate size with molecular weights in the range 700–1400, differing in steps of 58 units, which is the weight of the branched‐chain linkage C3H6O in lignin. Hydrogen was found to have a negative effect on the formation of the low‐molecular‐weight products.  相似文献   

3.
Enzymatic degradation of two lignin-based polymers (lignophenols), lignocatechol and lignocresol, prepared by selectively grafting catechol and p-cresol to Cα positions of lignin, respectively, were carried out in aqueous organic solvents. Both lignophenols showed high reactivity in the peroxidase-catalyzed oxidation. Structural analyses by NMR spectroscopies revealed that the degraded lignophenols contained aliphatic chain content, which might be mainly formed in the reduction of the intermediate initially generated by the aromatic ring cleavage. Lower amount of aromatic units in the lignophenols after degraded by peroxidase also indicted the cleavage of aromatic rings. Due to the substitution of phenols at Cα positions of lignin, the degraded lignophenols did not have carbonyl structure, which was abundant in the biodegradation products of native lignin. The two lignophenols were also degraded by Rhus vernicifera laccase. But the degree of degradation was lower than that of the degradation by peroxidase, which might be due to the low activity of laccase on the lignin moieties in lignophenols.  相似文献   

4.
The laccase‐catalyzed oxidative polymerization of monomeric and dimeric lignin model compounds was carried out with oxygen as the oxidant in aqueous medium. The oligomers were characterized by using gel permeation chromatography (GPC) and matrix‐assisted laser desorption ionization time‐of‐flight mass spectroscopy (MALDI‐TOF MS) analysis. Oxidative polymerization led to the formation of oligomeric species with a number‐average molecular weight (Mn) that ranged from 700 to 2300 Da with a low polydispersity index. Spectroscopic analysis provided insight into the possible modes of linkages present in the oligomers, and the oligomerization is likely to proceed through the formation of C?C linkages between phenolic aromatic rings. The oligomers were found to show good UV light absorption characteristics with high molar extinction coefficient (5000–38 000 m ?1 cm?1) in the UV spectral region. The oligomers were blended independently with polyvinyl chloride (PVC) by using solution blending to evaluate the compatibility and UV protection ability of the oligomers. The UV/Vis transmittance spectra of the oligomer‐embedded PVC films indicated that these lignin‐like oligomers possessed a notable ability to block UV light. In particular, oligomers obtained from vanillyl alcohol and the dimeric lignin model were found to show good photostability in accelerated UV weathering experiments. The UV‐blocking characteristics and photostability were finally compared with the commercial low‐molecular‐weight UV stabilizer 2,4‐dihydroxybenzophenone.  相似文献   

5.
A pyrolysis oil obtained from the fast pyrolysis of poplar wood was subjected to mild hydrolysis and an aqueous and a non-aqueous fraction recovered. The non-aqueous fraction (pyrolytic lignin), a brown powder, was 23% of the oil, or 16% of the wood, corresponding to about 80% volatilization of the lignin content. Nuclear magnetic resonance spectra of this pyrolytic lignin were obtained, and its structure appears to be very similar to that of steam exploded poplar lignin. Methoxy content is relatively high and syringyl units appear to predominate over guaiacyl units. The pyrolytic lignin appears to be somewhat more degraded than steam exploded lignin and is probably lower in molecular weight.  相似文献   

6.
The dioxane lignin and the natural lignin of kenaf undergo 37.62% and 94.6% cleavage, respectively. The combined monomeric degradation products have been studied by the GLC method. The presence of substances relating to three types of structural units has been established: p-coumaryl, gualacyl, and syringyl. It has been shown by chromatography on Sephadex LH-20 (with ethanol-water (9:1) as solvent and eluent) that the phenolic products of degradation extracted by ethyl acetate at pH 2 consist of five fractions: oligomers, tetramers, trimers, dimers, and monomers.Institute of the Chemistry of Plant Substances, Academy of Sciences of the Uzbek SSR, Tashkent. Translated from Khimiya Prirodnykh Soedinenii, No. 2, pp. 234–235, March–April, 1986.  相似文献   

7.
Secondary organic aerosol (SOA) generated from the high-NO(x) photooxidation of isoprene was dissolved in water and irradiated with λ > 290 nm radiation to simulate direct photolytic processing of organics in atmospheric water droplets. High-resolution mass spectrometry was used to characterize the composition at four time intervals (0, 1, 2, and 4 h). Photolysis resulted in the decomposition of high molecular weight (MW) oligomers, reducing the average length of organics by 2 carbon units. The average molecular composition changed significantly after irradiation (C(12)H(19)O(9)N(0.08) + hν → C(10)H(16)O(8)N(0.40)). Approximately 65% by count of SOA molecules decomposed during photolysis, accompanied by the formation of new products. An average of 30% of the organic mass was modified after 4 h of direct photolysis. In contrast, only a small fraction of the mass (<2%), belonging primarily to organic nitrates, decomposed in the absence of irradiation by hydrolysis. Furthermore, the concentration of aromatic compounds increased significantly during photolysis. Approximately 10% (lower limit) of photodegraded compounds and 50% (upper limit) of the photoproducts contain nitrogen. Organic nitrates and multifunctional oligomers were identified as compounds degraded by photolysis. Low-MW 0N (compounds with 0 nitrogen atoms in their structure) and 2N compounds were the dominant photoproducts. Fragmentation experiments using tandem mass spectrometry (MS(n), n = 2-3) indicate that the 2N products are likely heterocyclic/aromatic and are tentatively identified as furoxans. Although the exact mechanism is unclear, these 2N heterocyclic compounds are produced by reactions between photochemically-formed aqueous NO(x) species and SOA organics.  相似文献   

8.
Summary 1. The hydrogenolysis of Willstätter spruce lignin has been performed under the optimum conditions. It has been shown that on hydrogenolysis in an aqueous alkaline medium in the presence of an inhibitor (phenol) the lignin macromolecules can be converted into low-molecular-weight ether-soluble products with a yield of about 80%.2. A comparative study of the ether-soluble fractions of Willstätter spruce lignin and hydrolysis spruce lignin has shown that hydrogenolysis takes place similarly in the two cases: the yields of phenols and the proportion of cresols in them are similar. In the Willstätter spruce lignin, the yield of acids is higher and that of neutral products lower than in the hydrolysis spruce lignin.3. Investigations of the group compositions of the hydrogenolysis products and of model substances have permitted the hypothesis that the Willstätter lignin contains a considerable amount of biphenyl structures.Translated from Khimiya Prirodnykh Soedinenii, No. 1, pp. 106–112, January–February, 1972.  相似文献   

9.
The high molecular weight material lignin consists of phenylpropane units linked together by a variety of bond types. During the past eight years, two newly developed degradation procedures have permitted the first direct determinations of the nature of these bonds. The first procedure affords a very mild partial hydrolysis of benzyl ether bonds. Eleven dimeric, trimeric, and tetrameric degradation products were obtained in this way from spruce and beech lignin: they exhibited three different kinds of bonds between the C9 structural units, and their structures have all been elucidated. In the second procedure, the most important kind of bond in lignin, i. e. the arylglycerol-β-aryl ether bond, can be subjected to directed cleavage under mild conditions after introduction of a suitable neighboring group. On application to beech lignin, 91 % of the material was degraded giving monomeric to tetrameric phenols. Complete structural elucidation of the twenty dimeric phenols isolated and a knowledge of their relative yields and the yields of the other fractions obtained by gel filtration permitted a structural scheme to be set up for beech lignin in which the C9 structural units are linked together by no less then ten different kinds of bonds. The structural scheme, which can be readily explained biogenetically, has the same elemental composition as natural beech lignin. Further support for the structural scheme comes from a comparison of the 13C-NMR spectrum of natural beech lignin and a 13C-NMR spectrum calculated for the proposed structure on the basis of about fifty lignin model substances.  相似文献   

10.
Our over dependency on the fossil resource for industrial chemicals and fuels faces great challenges.Recently, the production of monophenols from lignin in lignocellulosic biomass is regarded as a promising process for sustainable biofuels. This article discusses the conversion of lignin in actual biomass directly to monophenols. The two step way including extraction of lignin from biomass and further degradation of the lignin oligomers to monophenols is especially discussed. The obtained monophenols can also be converted to chemicals with low-oxygen content via hydrodeoxygenation process. For extraction of lignin,co-solvent system is the most adopted for hydrolysis or solvolysis of lignin assisted by acid or alkaline catalysts. The structure of the obtained oligomers derived from lignin is discussed in detail. For lignin depolymerization, hydrogenolysis is an efficient method with the use of gaseous hydrogen or alcohols as hydrogen source. At the meantime, depolymerization mechanism and the route for repolymerization of the reaction intermediates are presented here. In hydrodeoxygenation process, metal catalysts, especially noble metal catalysts are required. The precise effects of the reaction solvents and catalysts on extraction and degradation of lignin need to be further investigated, and this will benefit to design more efficient strategies for lignin utilization.  相似文献   

11.
Four intramolecular hydrogen bonding-driven aromatic amide foldamers 2-5 have been designed and synthesized in which a 2-methoxy-3-nitrobenzamide unit was incorporated at the end of the backbone. Kinetic studies in dioxane-water (4:1, v/v) at 60-90 degrees C have revealed that the folded backbone of the oligomers was, like the rigidified spherand, able to complex Li+, Na+, and K+ and, consequently, accelerated the hydrolysis of the nitro-appended anisole unit of the foldamers. Generally, longer foldamers displayed an increased accelerating effect, and LiOH displayed the highest reactivity probably due to the most efficient complexation by the folded oligomers. Addition of excessive potassium chloride substantially reduced the complexing interaction, and the hydrolysis of the longer oligomers became slower than that of the shorter ones due to an increased steric effect. The results indicate that, even in a hot aqueous medium of high polarity, intramolecular hydrogen bonding is still able to induce structurally matched oligomers to generate a preorganized rigidified conformation.  相似文献   

12.
Analytical pyrolysis combined with gas chromatography/mass spectrometry was used to analyse the structure and quantity of aromatic components, mainly guaiacyl and hydroxyphenyl derivatives, directly from chemical pulps. The quantity of aromatic degradation products was determined using a new external calibration method. The external standard was analyzed similarly to the pulp sample, and the combined area of the degradation products formed, normalized to the sample amount, was used for calibration. The method was sensitive enough to detect aromatics from fully bleached softwood pulps at a concentration level of 0.4 wt.%.The effect of bleaching on lignin structures in softwood pulps was studied by following the changes in guaiacyl-type degradation product distribution. The residual lignin structures that had been modified during cooking were removed during the course of bleaching. The residual lignin in fully bleached pulps therefore was found to bear features characteristic of native lignin in addition to increased oxidation. A striking enrichment of hydroxyphenyl-type aromatic pyrolysis products was observed during bleaching. It is suggested that they are derived not only from lignin but also from other pulp components.  相似文献   

13.
The application of high temperature liquid water(HTLW) to decomposition of lignin as efficient and green solution for phenolic compounds recovery was studied.Benzyl phenyl ether(BPE),the lignin model compound,was treated at temperatures ranging from 220 to 250℃.BPE undergo hydrolysis in HTLW,and main products were phenol and benzyl alcohol with the minimum selectivities of 75.7%and 82.8%,respectively.Lower temperature led to higher selectivity in 220-250℃temperature range.The kinetics on BPE hydrolysis was studied and the activation energy was determined as 150.3±12.5 kJ/mol with the first-order kinetic equations.Based on products distribution,the reaction mechanism for decomposition of benzyl phenyl ether was proposed.The investigated process provides insights into the design of a commercial method for utilization of lignin.  相似文献   

14.
The reaction of formaldehyde with lignin model compounds in acidic medium was shown to give fast crosslinking of alkyl-substituted phenolic and etherified phenolic lignin model compounds at positions meta to the aromatic hydroxy groups. This reaction differs from the reaction of formaldehyde with phenolic lignin model compounds in alkaline conditions, where the reaction with formaldehyde always occurs at positions ortho/para to the aromatic hydroxy group., The reaction of formaldehyde with lignin in acidic medium have considerable potential for the crosslinking of lignin, particularly heavily condensed alkali lignin, for use in polymeric products.  相似文献   

15.
BN-embedded oligomers with different pairs of BN units were synthesized by electrophilic borylation. Up to four pairs of BN units were incorporated in the large polycyclic aromatic hydrocarbons (PAHs). Their geometric, photophysical, electrochemical, and Lewis acidic properties were investigated by X-ray crystallography, optical spectroscopy, and cyclic voltammetry. The B−N bonds show delocalized double-bond characteristics and the conjugation can be extended through the trans-orientated aromatic azaborine units. Calculations reveal the relatively lower aromaticity for the inner azaborine rings in the BN-embedded PAH oligomers. The frontier orbitals of the longer oligomers are delocalized over the inner aromatic rings. Consequently, the inner moieties of the BN-embedded PAH oligomers are more active than the outer parts. This is confirmed by a simple oxidation reaction, which has significant effects on the aromaticity and the intramolecular charge-transfer interactions.  相似文献   

16.
Oxidation of hydrolysis lignin with hydrogen peroxide in acid solutions   总被引:1,自引:0,他引:1  
Optimal conditions were determined for oxidation of hydrolysis lignin and other insoluble lignin samples with hydrogen peroxide in acid solutions, ensuring solubility of lignin in dilute alkali. The correlation was found between the functionalization and solubility of hydrolysis lignin and its oxidation products. A procedure was suggested for determining carboxy groups in lignin.  相似文献   

17.
设计能高效溶解木质素的溶剂对木质素的高值化利用具有重要意义。本文中设计了基于氯化胆碱、甜菜碱和左旋肉碱作为氢键受体(HBA)和四种氢键供体(HBD)的生物质衍生的酸性低共熔溶剂(DESs),可以溶解包括碱木质素(AL)、脱碱木质素(DAL)、酶解木质素(EHL)和硫酸盐木质素(KL)在内的不同类型的木质素。在大多数所设计的DESs中,EHL比AL、KL和DAL更容易溶解,而不同木质素中羟基的含量对木质素的溶解有显著影响,但是并非在所有DESs中木质素的溶解情况都符合上述规则。氯化胆碱是构建DESs的首选HBA,具有良好的性能并适应于不同类型木质素的溶解,而合适的酸度使苯甲酸和没食子酸乙酯成为对木质素溶解有利的HBDs。研究表明能有效溶解木质素的DESs应具有强的氢键酸度(α值> 0.95)以及与溶解的木质素匹配的合适极性。此外,HBD的pKa值和DESs的酸度也是评价酸性DESs溶解木质素性能的有效指标。通常具有适中pKa值的HBDs能够用于构建具有高效的木质素溶解性能的DESs。DESs的粘度对木质素溶解也有一定影响,较低的粘度有助于木质素溶解。  相似文献   

18.
BN‐embedded oligomers with different pairs of BN units were synthesized by electrophilic borylation. Up to four pairs of BN units were incorporated in the large polycyclic aromatic hydrocarbons (PAHs). Their geometric, photophysical, electrochemical, and Lewis acidic properties were investigated by X‐ray crystallography, optical spectroscopy, and cyclic voltammetry. The B?N bonds show delocalized double‐bond characteristics and the conjugation can be extended through the trans‐orientated aromatic azaborine units. Calculations reveal the relatively lower aromaticity for the inner azaborine rings in the BN‐embedded PAH oligomers. The frontier orbitals of the longer oligomers are delocalized over the inner aromatic rings. Consequently, the inner moieties of the BN‐embedded PAH oligomers are more active than the outer parts. This is confirmed by a simple oxidation reaction, which has significant effects on the aromaticity and the intramolecular charge‐transfer interactions.  相似文献   

19.

Phenolic compounds released and generated during hydrolysis inhibit fermentation of lignocellulose hydrolysates to ethanol by Saccharomyces cerevisiae. A wide variety of aromatic compounds form from lignin, which is partially degraded during acid hydrolysis of the lignocellulosic raw material. Aromatic compounds may also form as a result of sugar degradation and dare present in wood as extractives. The influence of hydroxy-methoxy-benzaldehydes, diphenols/quinones, and phenylpropane derivatives on S. cerevisiae cell growth and ethanol formation was assayed using a defined medium and oxygen-limited conditions. The inhibition effected by the hydroxy-methoxy-benzaldehydes was highly dependent on the positions of the substituents. A major difference in inhibition by the oxidized and reduced form of a diphenol/quinone was observed, the oxidized form being the more inhibitory. The phenylpropane derivatives were examined with respect to difference in toxicity depending on the oxidation-reduction state of the γ-carbon, the presence and position of unsaturated bonds in the aliphatic side chain, and the number and identity of hydroxyl and methoxyl substituents. Transformations of aromatic compounds occuring during the fermentation included aldehyde reduction, quinone reduction, and double bond saturation. Aromatic alcohols were detected as products of reductions of the corresponding aldehydes, namely hydroxy-methoxy-benzaldehydes and coniferyl aldehyde. High molecular mass compounds and the corresponding diphenol were detected as products of quinone reduction. Together with coniferyl alcohol, dihydroconiferyl alcohol was identified as a major transformation products of conifery aldehyde.

  相似文献   

20.
Hydrolysis products of TiOSO4 · 22 depending on pH was shown to differently affect an aggregation stability of sulfate lignin. Within the acidic region, these products cause coagulation effect with respect to sulfate lignin, whereas within alkaline region sulfate lignin is the stabilizer preventing the formation and precipitation of the hydrolysis products of titanyl sulfate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号