首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The principle of an on-line preconcentration method for capillary zone electrophoresis (CZE) named electrokinetic supercharging (EKS), is described and based on computer simulation the preconcentration behavior of the method is discussed. EKS is an electrokinetic injection method with transient isotachophoretic process, is a powerful preconcentration technique for the analysis of dilute samples. After filling the separation capillary with supporting electrolyte, an appropriate amount of a leading electrolyte was filled and the electrokinetic injection was started. After a while, terminating electrolyte was filled subsequently and migration current was applied. This procedure enabled the introduction of a large amount of sample components from a dilute sample without deteriorating separation. Computer simulation of the electrokinetic injection revealed that EKS was effective for the preconcentration of analytes with wide mobility ranges by proper choice of transient isotachophoresis (ITP) system and electroosmotic flow (EOF) should be suppressed to increase injectable amount of analytes under constant voltage mode. A test mixture of rare-earth chlorides was used to demonstrate the uses of EKS-CZE. When a 100 microL sample was used, the low limit of detectable concentration was 0.3 microg/L (1.8 nM for Er), which was comparable or even better than that of ion chromatography and inductively coupled plasma-atomic emission spectrometry (ICP-AES).  相似文献   

2.
Xu Z  Hirokawa T 《Electrophoresis》2004,25(14):2357-2362
We developed a novel on-line preconcentration procedure for microchip gel electrophoresis (MCGE), which enables application of electrokinetic supercharging (EKS) for highly sensitive detection of DNA fragments on a cross-geometry microchip. In comparison with conventional pinched injection using the cross microchip, the present approach allows loading a much larger amount of the sample by taking advantage of a newly developed operational mode. In order to obtain high preconcentration effect and prevent splitting of an enriched sample into subchannels, i.e., off the detector range, effects of the voltage applied on the reservoirs and the time of isotachophoretic preconcentration were examined. The optimal balance between the voltage and time was found for a high-sensitivity analysis of DNA fragments. After experimental optimization the detection limit of a 150 bp fragment was as low as 0.22 mg/L (S/N = 3) that is 10 times better than using the conventional pinched injection.  相似文献   

3.
A method has been proposed for the determination of 17 herbicides and their metabolites in natural waters by capillary zone electrophoresis with UV detection at 190 nm. Dispersive liquid-liquid microextraction with trichloromethane has been used for pesticide recovery from water. The high sensitivity of determination has been provided by additional intracappilary preconcentration: the limits of pesticide detection in water involving off- and on-line preconcentration are 0.5–3.0 μg/L. The analysis takes 1–1.5 h; the relative standard deviation of the analysis results does not exceed 5%.  相似文献   

4.
The aim of this research was to develop a simple procedure for a highly sensitive determination of low-molecular-weight (LMW) carbonyl compounds in drinking water and natural water. We employed a preconcentration HPLC system with 2,4-dinitrophenylhydrazine (DNPH) for the determination of LMW carbonyl compounds. A C-18 reverse-phase preconcentration column was used instead of a sample loop at the sample injection valve. A 0.1 - 5.0 mL portion of the derivatized sample solution was injected with a gas-tight syringe, and a 15% acetonitrile aqueous solution was pushed through the preconcentration column to remove the unreacted excess DNPH, which caused serious interference in the determination of formaldehyde. The detection limits were 1 - 3 nM with a relative standard deviation of 2 - 5% for 20 nM standard solutions (n = 5). The calibration curves were essentially unaffected by coexisting sea salts. Applications to commercial mineral water, tap water, river water, pond water and seawater are presented.  相似文献   

5.
In this study, a new procedure, based on on-line solid-phase extraction (SPE) and analysis by liquid-chromatography-atmospheric pressure chemical ionization-mass spectrometry (LC-APCI-MS), has been developed for the simultaneous, multianalyte determination of 21 selected pesticides, phenols and phthalates in water. SPE was carried out on polymeric PLRP-s cartridges by percolating 20 mL-samples. For sample preconcentration, the performance of a prototype programmable field extraction system (PROFEXS) was evaluated against the commercial laboratory bench Prospekt system used for method development. The Profexs is designed for the automated on-site sampling, SPE preconcentration, and storage of up to 16 samples in SPE cartridges. These cartridges are further eluted and on-line analyzed with the Prospekt coupled to the chromatographic system. In the optimized method, where completely on-line SPE-LC-MS analysis of the samples is carried out with the Prospekt in the laboratory, detection limits lower than 100 ng/L, and satisfactory precision (relative standard deviations <25%) and accuracies (recovery percentages >75%) were obtained for most investigated compounds from the analysis of spiked Milli-Q water. The extraction efficiency achieved with the Profexs was comparable to that of the Prospekt for most compounds and somewhat lower for the most apolar analytes, probably due to adsorption on the pump filters. The completely on-line optimized method was applied to the analysis of surface water, ground water and drinking water from a waterworks in Barcelona. Some pesticides and phenols were found in both surface water and groundwater at ng/L or µg/L levels, but not in the final drinking water. Di(2-ethylhexyl)phthalate (DEHP) was present in all samples investigated, including blanks. To the author's knowledge, this is the first work describing the application of a fully automated on-line SPE-LC-MS method for the simultaneous analysis of pesticides, phenols, and phthalates in water, and the second one that examines the possibilities of the prototype Profexs for automated on-site SPE preconcentration of organic pollutants from water samples.  相似文献   

6.
A system for on-line preconcentration and determination of lead by flame atomic absorption spectrometry (FAAS) was proposed. It was based on the sorption of lead(II) ions on a minicolumn of polyurethane foam loaded with 2-(2-thiazolylazo)-5-dimethylaminophenol (TAM). The optimisation step was carried out using two-level full factorial and Doehlert designs for the determination of the optimum conditions for lead preconcentration. The proposed procedure allowed the determination of lead with a detection limit of 2.2 microg L(-1), and a precision, calculated as relative standard deviation (RSD), of 2.4 and 6.8 for a lead concentration of 50.0 and 10.0 microg L(-1), respectively. A preconcentration factor of 45 and a sampling frequency of 27 samples per hour were obtained. The recovery achieved for lead determination in the presence of several cations demonstrated that this procedure has enough selectivity for analysis of environmental samples. The validation was carried out by analysis of certified reference material. This procedure was applied to lead determination in natural food.  相似文献   

7.
A procedure for preconcentration and determination of lead in water is described. The method is based on the sorption of Pb(II) in a minicolumn packed with a functionalized sorbent and subsequent elution with acidic solution. The determination of lead content in the eluate was carried out using flame atomic absorption spectrometry. The sorbent was prepared by immobilization of the ligand 4-(5'-bromo-2'-thiazolylazo)orcinol on polystyrene-divinylbenzene through an azo spacer. Diazotization and coupling reactions were used for synthesis of the sorbent. Some variables affecting the preconcentration were optimized using a full factorial design. Under optimized conditions, the method presented a detection limit of 0.5 microg/L and enrichment factor of 36 for a sample volume of 25 mL. The accuracy of the method was tested by the determination of lead in a standard reference material (National Institute of Standards and Technology 1643d Fresh Water). The proposed procedure was applied to the determination of lead in samples of natural and drinking waters.  相似文献   

8.
A novel method for cobalt preconcentration by cloud point extraction with on-line phase separation in a PTFE knotted reactor and further determination by electrothermal atomic absorption spectrometry (ETAAS) is proposed. The cloud point system was formed in the presence of non-ionic micelles of polyethyleneglycolmono-p-nonylphenylether (PONPE 7.5) and it was retained on the inner walls of a knotted reactor (KR). The surfactant rich-phase was removed from the knotted reactor with 75 microL of methanol acidified with 0.8 mol L(-1) nitric acid, directly into the dosing hole of the L'Vov graphite tube. An enrichment factor of 15 was obtained with a preconcentration time of 60 s, with respect to the direct determination of cobalt by ETAAS in aqueous solutions. The value of the detection limit for the preconcentration of 5 mL of sample solution was 10 ng L(-1). The precision, expressed as the relative standard deviation (R.S.D.), for 10 replicate determinations at 0.5 microg L(-1) Co level was 4.5%. Verification of the accuracy was carried out by analysis of a standard reference material (NIST SRM 1640e "Trace elements in natural water"). The method was successfully applied to the determination of cobalt in drinking water samples.  相似文献   

9.
The feasibility of using ethyl acetate for the desorption of trace pollutants from a liquid chromatographic precolumn on-line into a diphenyltetramethyldisilazane-deactivated retention gap and, subsequently analysis by means of capillary gas chromatography has been demonstrated. First 5% of methanol are added to the water sample to prevent sorption of analytes onto parts of the preconcentration system. About 1 ml of this aqueous sample is injected onto a precolumn containing a polymeric stationary phase, using water–methanol (95:5, v/v) for transport and clean-up. The precolumn is desorbed with ethyl acetate and a fraction of 75 μl is injected on-line into the retention gap; separation is then achieved on a capillary CP Sil 19 column. No breakthrough of the test compounds was observed in the preconcentration step. The recovery was quantitative and the response obtained with flame ionization detection was linear in the range 0.1–100 ng/ml. The effect of varying the sorption flow rate on the recovery was studied. The system was applied to the analysis of river water.  相似文献   

10.
The use of a closed-loop on-line enrichment procedure in combination with an ICP plasma emission spectrometer has been developed for the analysis of trace metal ions, such as Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn. The procedure utilizes a preconcentration column filled with an anion exchange resin and 8-hydroxy-7-iodoquinoline-5-sulphonic acid is added to the sample prior to preconcentration. Details on the optimization of pretreatment and instrumental conditions are described. Results obtained for the analysis of river water and antarctic seawater are reported.Presented in part at the 1989 European Winter Conference on Plasma Spectrochemistry, Reutte, Austria  相似文献   

11.
Abstract

A HPLC method has been developed for trace analysis of chlorophenols in the 0.2–2 ppb range from spiked water samples. Simple liquid-liquid extraction followed by on-line preconcentration of total mono- and dichlorophenols has been performed using a divinylbenzene-styrene copolymeric sorbent (PRP1) as packing material for the precolumn. The chlorophenols have been eluted from the precolumn on an analytical column (5μm LiChrosorb RP-18, 12.5 cm × 4 mm) by use of a switching valve system followed by separation. Detection was carried out with an electrochemical detector. The linearity of the detector response has been proved over two orders of magnitude. The detection limit of chlorophenols by means of the electrochemical method is in the lower picogram range. The recoveries of the isomeric chlorophenols from spiked river water samples having initial concentrations of 2ppb are usually 70–90%. The procedure has been applied to drinking water and river water.  相似文献   

12.
Zhang S  Macka M  Haddad PR 《Electrophoresis》2006,27(5-6):1069-1077
A dual-layer ion-exchange latex-coated column was prepared and characterised for on-capillary preconcentration of cations using an open-tubular ion-exchange CEC format. After preconcentration, the analyte cations were eluted with a transient isotachophoretic gradient and separated by CE. The latex double layer was established by first coating the negatively charged wall of the capillary with a layer of cationic quaternary ammonium anion-exchange Dionex AS5A latex particles (60 nm diameter), and then coating a layer of anionic sulphonated cation-exchange Dionex CS3 latex particles (300 nm diameter) onto the underlying AS5A layer. The adhesion of layers is based on electrostatic attractions. Several dual-layer capillaries were characterised for their EOF and ion-exchange capacity and this showed that coatings could be prepared reproducibly by a simple flushing procedure. The dual-layer columns exhibited a moderate, pH-independent EOF (ca. 26 x 10(-9 )m2V(-1)s(-1)) and an ion-exchange capacity of 57 microequiv./g (or 2.69 nequiv./column). Using an 8 cm length of coated capillary combined with a 72 cm length of untreated capillary, a method for on-line preconcentration and separation of monovalent organic bases, alkali metal ions and alkaline earth metal ions by CE was developed. Recoveries for the preconcentration step were 48% for 4-methylbenzylammonium, 43% for benzylammonium, 30-32% for alkali metal ions and 71-75% for alkaline earth cations. In all cases, recoveries were reproducible with RSDs being less than 6.2%. The influences of the ion-exchange selectivity coefficient of the analyte and the sample-loading rate on analyte recovery were also examined. The proposed method was utilised for the determination of alkaline earth cations and low microM detection limits were obtained.  相似文献   

13.
A flow injection system incorporating an alumina microcolumn has been coupled to inductively coupled plasma mass spectrometry (ICP-MS) for on-line preconcentration and determination of platinum (IV) in natural waters. Depending on the nature of the sample, a nominal preconcentration factor of up to 600 can be achieved by eluting with 50microl of 2 mol/l NH(4)OH. The limit of detection after a 5 min preconcentration time was 4 ngl(-1), with a relative standard deviation of 4% (100 ngl(-1) working solution). The proposed method was assessed for the determination of platinum (IV) in natural waters, motor car exhaust and some common analytical reagents.  相似文献   

14.
Conditions for the simultaneous determination of paraquat, diquat and difenzoquat by capillary zone electrophoresis were established by combining two preconcentration procedures. Off-line solid-phase extraction was used for the isolation and preconcentration of quats in drinking water. Quats were then analysed by capillary electrophoresis using sample stacking with matrix removal as on-column preconcentration procedure. Two different porous graphitic carbon cartridges were compared. The breakthrough volumes of the three herbicides were calculated and the loading capacity of the sorbents was compared. Recoveries higher than 80% for difenzoquat and around 40% for paraquat and diquat were obtained when a sample volume of 250 ml was percolated. For the stacking-capillary electrophoresis analysis of quats, 50 mM acetic acid-ammonium acetate (pH 4.0), 0.8 mM cetyltrimethylammonium bromide with 5% (v/v) methanol as carrier electrolyte was used. Detection limits, based on a signal-to-noise ratio of 3:1, were lower than 0.3 microg l(-1) for standards in Milli-Q water, and lower than 2.2 microg l(-1) for drinking water samples. Run-to-run and day-to-day precision of the method were established. The two preconcentration procedures used together was successfully applied to the analysis of the three herbicides in spiked drinking water at concentrations below the maximum admissible US Environmental Protection Agency levels.  相似文献   

15.
Quaternary ammonium functionalised polymeric latex particles were coated onto the wall of a fused-silica capillary or onto a methacrylate monolithic bed synthesised inside the capillary in order to create ion-exchange stationary phases of varying ion-exchange capacity. These capillaries were coupled in-line to a separation capillary and used for the solid-phase extraction (SPE), preconcentration and subsequent separation of organic anions by capillary electrophoresis. A transient isotachophoretic gradient was used for the elution of bound analytes from the SPE phase using two modes of separation. The first comprised a low capacity SPE column combined with a fluoride/octanesulfonate discontinuous electrolyte system in which peak compression occurred at the isotachophoretic gradient front. The compressed anions were separated electrophoretically after elution from the SPE preconcentration phase and resolution was achieved by altering the pH of the electrolyte in which the separation was performed. In the second approach, a latex-coated monolithic SPE preconcentration stationary phase was used in combination with a fluoride/perchlorate electrolyte system, which allowed capillary electrochromatographic separation to occur behind the isotachophoretic gradient front. This method permitted the removal of weakly bound anions from the SPE phase, thereby establishing the possibility of sample clean-up. The effect of the nature of the strong electrolyte forming the isotachophoretic gradient on the separation and also on the preconcentration step was investigated. Capillary electrochromatography of inorganic and organic species performed on the latex-coated monolithic methacrylate column highlighted the presence of mixed-mode interactions resulting from the incomplete coverage of latex particles onto the monolithic surface. Analyte preconcentration prior to separation resulted in compression of the analyte zone by a factor of 300. Improvement in the limit of detection of up to 10400 times could be achieved when performing the preconcentration step and the presented methods had limits of detection (S/N=3) ranging between 1.5 and 12 nM for the organic anions studied.  相似文献   

16.
Huang H  Xu F  Dai Z  Lin B 《Electrophoresis》2005,26(11):2254-2260
A microchip for integrated isotachophoretic (ITP) preconcentration with gel electrophoretic (GE) separation to decrease the detectable concentration of sodium dodecyl sulfate (SDS)-proteins was developed. Each channel of the chip was designed with a long sample injection channel to increase the sample loading and allow stacking the sample into a narrow zone using discontinuous ITP buffers. The pre-concentrated sample was separated in GE mode in sieving polymer solutions. All the analysis steps including injection, preconcentration, and separation of the ITP-GE process were performed continuously, controlled by a high-voltage power source with sequential voltage switching between the analysis steps. Without deteriorating the peak resolution, four SDS-protein analyses with integrated ITP-GE system resulted in a decreased detectable concentration of approximately 40-fold compared to the GE mode only. A good calibration curve for molecular weights of SDS-proteins indicated that the integrated ITP-GE system can be used for qualitative analysis of unknown protein samples.  相似文献   

17.
A flow-injection analysis (FIA) system incorporating a micro-column of ZrO2 has been used for the development of an on-line multi-element method for the simultaneous preconcentration and determination of Al, Bi, Cd, Co, Cr, Cu, Fe, Ga, In, Mn, Mo, Ni, Pb, Tl, V, Sb, Sn, and Zn by inductively coupled plasma atomic emission spectrometry (ICP–AES). The conditions for quantitative and reproducible preconcentration, elution, and subsequent on-line ICP–AES determination were established. A sample (pH 8) is pumped through the column at 3 mL min–1 and sequentially eluted directly into the ICP–AES with 3 mol L–1 HNO3. With a sample volume of 100 mL and an elution volume of 1 mL signal enhancement 100 times better than for conventional continuous aspirating systems was obtained for the elements studied. The reproducibility (RSD %) of the method at the 10 ng mL–1 level in the eluate is acceptable – less than 8% for five replicates. Recoveries between 95.4% and 99.9% were obtained for the elements analysed. ZrO2, with a specific surface area of 57 m2 g–1 and a capacity of approximately 5 mg g–1 for the elements studied, was synthesized by hydrolysis of ZrCl4. The preconcentration system was evaluated for several simple synthetic matrices, standard water samples and synthetic seawater. The effect of foreign ions on the efficiency of preconcentration of the elements studied was investigated. The application of a micro-column filled with high-surface-area ZrO2 and flow injection inductively coupled plasma atomic emission spectrometry enables preconcentration and simultaneous determination of 18 elements at low concentrations (ng L–1) in different water samples.  相似文献   

18.
A new technique has been developed for the determination of methyl-, ethyl-, methoxyethyl-, ethoxyethyl-, phenyl- and inorganic mercury in natural water samples. The mercury compounds have been complexed for the preconcentration on RP C18 columns by sodium pyrrolidinedithiocarbamate (SPDC), sodium diethyldithiocarbamate (SDDC) and hexamethyleneammonium (HMA) — hexamethylenedithiocarbamate (HMDC), separated by HPLC and determined by UV-PCO-CVAAS (ultra violet, post column oxidation, cold vapour atomic absorption spectrometry). The standard deviations are in the range of 6.9 to 11.8%. The recoveries amount to 86%, 78%, 88%, 83%, 79% and 84% for methyl-, ethyl-, methoxyethyl-, ethoxyethyl-, phenyl- and inorganic mercury for the enrichment from 300 ml water samples. The detection limit for methyl mercury is 0.5 ppt. This new on-line preconcentration procedure has been tested with rain, drinking, surface and process water samples.  相似文献   

19.
A flow injection (FI) on-line preconcentration procedure by using a nanometer-sized alumina packed micro-column coupled to inductively coupled plasma mass spectrometry (ICP-MS) was described for simultaneous determination of trace metals (V, Cr, Mn, Co, Ni, Cu, Zn, Cd and Pb) in the environmental samples. The effects of pH value, sample flow rate, preconcentration time, and interfering ions on the preconcentration of analytes have been investigated. Under the optimized operating conditions, the adsorption capacity of the nanometer-sized alumina for V, Cr, Mn, Co, Ni, Cu, Zn, Cd and Pb were found to be 11.7, 13.6, 15.7, 9.5, 12.2, 13.3, 17.1, 17.7 and 17.5 mg g−1, respectively. With 60 s preconcentration time and 60 s elution time, an enrichment factor of 5 and the sampling frequency of 15 h−1 were obtained. The proposed method has been applied to the determination of trace metals in environmental certified reference materials and natural water samples with satisfactory results.  相似文献   

20.
A novel on-line preconcentration and determination system based on a fiber-packed column was developed for speciation analysis of Cr in drinking water samples prior to its determination by flame atomic absorption spectrometry (FAAS). All variables involved in the development of the preconcentration method including, pH, eluent type, sample and eluent flow rates, interfering effects, etc., were studied in order to achieve the best analytical performance. A preconcentration factor of 32 was obtained for Cr(VI) and Cr(III). The levels of Cr(III) species were calculated by difference of total Cr and Cr(VI) levels. Total Cr was determined after oxidation of Cr(III) to Cr(VI) with hydrogen peroxide. The calibration graph was linear with a correlation coefficient of 0.999 at levels near the detection limit and up to at least 50 μg L−1. The relative standard deviation (R.S.D.) was 4.3% (C = 5 μg L−1 Cr(VI), n = 10, sample volume = 25 mL). The limit of detection (LOD) for both Cr(III) and Cr(VI) species was 0.3 μg L−1. Verification of the accuracy was carried out by the analysis of a standard reference material (NIST SRM 1643e “Trace elements in natural water”). The method was successfully applied to the determination of Cr(III) and Cr(VI) species in drinking water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号