首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new gas chromatography/mass spectrometry (GC/MS) system was designed and evaluated which we have named 'Supersonic GC/MS'. It is based on a modification of a commercially available GC/MS system to include a supersonic molecular beam (SMB) MS interface. In this system the standard electron ionization (EI) ion source was replaced with a fly-through EI ion source mounted in the path of the SMB. A hyperthermal surface ionization (HSI) ion source combined with a 90 degrees ion mirror (for the EI-produced ions) was also added, and placed inside the quadrupole mass analyzer in place of its original EI ion source. The 'Supersonic GC/MS' system requires 18 cm added bench space plus the addition of an air-cooled 60 L/s diffusion pump and a 537 L/min rotary pump. The system is user friendly since all the gas flow rates, heated zones, sampling and data analysis are performed the same way as the original system and are computer-controlled via the original software. Similar EI sensitivity was obtained as with the original system for hexachlorobenzene and octafluoronaphthalene, while improved EI detection limits were demonstrated for methyl stearate and eicosane due to the significant enhancement of their molecular ion abundances. A GC/MS detection limit of 500 ag for pyrene was demonstrated using HSI. Good supersonic expansion cooling was achieved with large alkanes, despite the use of a rotary pump at the nozzle chamber instead of a diffusion pump. High temperature GC/MS analysis was demonstrated for large polycyclic aromatic hydrocarbons (PAHs) including ovalene and decacyclene (ten rings). Library searches with EI mass spectra are demonstrated, and it is explained why the enhancement of the molecular ion actually improves the library search in most cases. The analysis of large phthalate esters is also described, and the improvement obtained is shown to originate from their enhanced molecular and high mass fragment ions.  相似文献   

2.
The nature of supersonic free jet expansion of a gas from high pressure into vacuum is reviewed and characterized in this article. The increasingly widespread applications and implications of this jet expansion process in mass spectrometry are described. Particular attention is paid to prospective advantages and possible problems when such jets are used to transport ions from a source at high pressure into the vacuum environment of a mass analyzer.  相似文献   

3.
The aim of this work was the assessment of the ability of a supersonic jet to accumulate sufficiently dense ion clouds inside the quadrupole, the ion cloud being “heated” to a relatively high temperature under a relatively low density of the residual gas (pressure lower than 10–4 Torr). Kinetic measurements gave an estimate of the number of accumulated ions at the beginning of the quadrupole of about 2 × 107 and their internal temperature of 6000 K.  相似文献   

4.
An atmospheric pressure interface transports ions from ambient pressure to the low-pressure environment of a mass spectrometer. A capillary coupled to an ion funnel is widely used. However, conventional ion funnels do little to negate the large amount of energy picked up by high-mass ions from the gas flow through the capillary. There has been little work done on the effects of gas flow on ion transmission, and the previous studies have all been limited to low-mass, low-charge ions. In this work, we account for the effects of gas flow, diffusion, and electric fields (static and oscillating) on ion trajectories and use simulations to design a new hybrid ion funnel-ion carpet (FUNPET) interface that transmits a broad mass range with a single set of instrument conditions. The design incorporates a virtual jet disruptor where pressure buildup and counter flow dissipate the supersonic jet that results from gas flow into the interface. This, and the small exit aperture that can be used with the FUNPET, reduces the gas flow into the next stage of differential pumping. The virtual jet disruptor thermalizes ions with a broad range of masses (1 kDa to 1 GDa), and once thermalized, they are transmitted into next region of the mass spectrometer with low excess kinetic energy. The FUNPET interface is easy to fabricate from flexible printed circuit board and a support frame made by 3D printing. The performance of the interface was evaluated using charge detection mass spectrometry.
Graphical Abstract ?
  相似文献   

5.
The electron impact mass spectrometry of straight chain alkanes C8H18-C40H82, squalane, methylstearate, 1-chlorohexadecane, 1-bromohexadecane, and dioctylphthalate was studied by sampling them with supersonic molecular beams. A fly-through Brink-type electron impact ion source was used, utilizing a vacuum background ion filtration technique based on differences between the kinetic energy of the supersonic beam species and that of thermal molecules. The 70-eV electron impact mass spectra of all the alkanes were characterized by a pronounced or dominant molecular weight peak together with all the fragment ions normally exhibited by the standard thermal 70-eV EI mass spectra. In contrast, the NIST library of most of these molecules did not show any molecular weight peak. By eliminating tile intramolecular thermal vibrational energy we gained control over the degree of molecular ion fragmentation by the electron energy. At an electron energy of 18 eV the molecular ion dissociation was further reduced considerably, with only a small absolute reduction in the peak height by less than a factor of 2. The effect of vibrational cooling increased with the molecular size and number of atoms. Pronounced differences were observed between the mass spectra of the straight chain triacontane and its branched isomer squalane. Similar mass spectra of octacosane (C28H58) achieved with 70-eV EI in a supersonic molecular beam were obtained with a magnetic sector mass spectrometer by using an electron energy of 14 eV and an ion source temperature of 150 °C. However, this ion source temperature precluded the gas chromatography-mass spectrometry (GC-MS) of octacosane. The GC-MS of alkanes was studied with an ion trap gas chromatograph-mass spectrometer at an ion source temperature of 230 °C. Thermal peak tailing was observed for C20H42 and heavier alkanes, whereas for C28H58 and heavier alkanes the severe peak tailing made quantitative GC-MS impractical. In contrast, no peak tailing existed even with C40H82 for GC-MS in supersonic molecular beams. The minimum detected amount of eicosane (C20, H42) was shown to be 60 fg. This was demonstrated by using single ion monitoring with the quadrupole mass analyzer tuned to the molecular weight peak of 282 u. The coupling of electron impact mass spectrometry in supersonic molecular beams with hyperthermal surface ionization and a fast GC-MS inlet is briefly discussed.  相似文献   

6.
A new type of low thermal mass (LTM) fast gas chromatograph (GC) was designed and operated in combination with gas chromatography mass spectrometry (GC-MS) with supersonic molecular beams (SMB), including GC-MS-MS with SMB, thereby providing a novel combination with unique capabilities. The LTM fast GC is based on a short capillary column inserted inside a stainless steel tube that is resistively heated. It is located and mounted outside the standard GC oven on its available top detector port, while the capillary column is connected as usual to the standard GC injector and supersonic molecular beam interface transfer line. This new type of fast GC-MS with SMB enables less than 1 min full range temperature programming and cooling down analysis cycle time. The operation of the fast GC-MS with SMB was explored and 1 min full analysis cycle time of a mixture of 16 hydrocarbons in the C(10)H(22) up to C(44)H(90) range was achieved. The use of 35 mL/min high column flow rate enabled the elution of C(44)H(90) in less than 45 s while the SMB interface enabled splitless acceptance of this high flow rate and the provision of dominant molecular ions. A novel compound 9-benzylazidanthracene was analyzed for its purity and a synthetic chemistry process was monitored for the optimization of the chemical reaction yield. Biodiesel was analyzed in jet fuel (by both GC-MS and GC-MS-MS) in under 1 min as 5 ppm fatty acid methyl esters. Authentic iprodion and cypermethrin pesticides were analyzed in grapes extract in both full scan mode and fast GC-MS-MS mode in under 1 min cycle time and explosive mixture including TATP, TNT and RDX was analyzed in under 1 min combined with exhibiting dominant molecular ion for TATP. Fast GC-MS with SMB is based on trading GC separation for speed of analysis while enhancing the separation power of the MS via the enhancement of the molecular ion in the electron ionization of cold molecules in the SMB. This paper further discusses several features of fast GC and fast GC-MS and the various trade-offs involved in having powerful and practical fast GC-MS.  相似文献   

7.
A new approach of flow modulation comprehensive two-dimensional gas chromatography-mass spectrometry (GC x GC-MS) with supersonic molecular beam (SMB) and a quadrupole mass analyzer is presented. Flow modulation uniquely enables GC x GC-MS to be achieved even with the limited scan speed of quadrupole MS, and its 20 ml/min column flow rate is handled, splitless, by the SMB interface. Flow modulation GC x GC-SMB-MS shares all the major benefits of GC x GC and combines them with GC-MS including: (a) increased GC separation capability; (b) improved sensitivity via narrower GC peaks; (c) improved sensitivity through reduced matrix interference and chemical noise; (d) polarity and functional group sample information via the order of elution from the second polar column. In addition, GC x GC-SMB-MS is uniquely characterized by the features of GC-MS with SMB of enhanced and trustworthy molecular ion plus isotope abundance analysis (IAA) for improved sample identification and fast fly-through ion source response time. The combination of flow modulation GC x GC with GC-MS with SMB (supersonic GC-MS) was explored with complex matrices such as diesel fuel analysis and pesticide analysis in agricultural products.  相似文献   

8.
A new type of photoionization ion source was developed for the ionization of cold molecules in supersonic molecular beams (named Cold PI). The system was based on a GC–MS with supersonic molecular beams and its fly‐through EI of cold molecules ion source (Cold EI) plus quadrupole mass analyzer. A continuously operated deuterium VUV photoionization lamp was added and placed above and between the supersonic nozzle and skimmer whereas the Cold EI ion source served only as a portion of the ion transfer ion optics. The supersonic nozzle and skimmer were voltage biased and the VUV light crossed the supersonic expansion about 10 mm from the nozzle. We obtained over three orders of magnitude enhancement in the relative abundance of the molecular ion of squalane in Cold PI versus in photoionization of this compound as a thermal compound. Accordingly, we also proved that standard photoionization is not as soft ionization method as previously perceived for large compounds. We found that Cold PI is as soft as and possibly softer than field ionization; thus, it could be the softest known ionization method. The ionization yield was about 200–300 times weaker than with Cold EI yet our limit of detection was about 200 femtogram in SIM mode for cholesterol and pyrene which is reasonable. Practically, all hydrocarbons gave only molecular ions with rather uniform response whereas alcohols gave some molecular ions plus major fragment ions particularly with a loss of water (similarly to field ionization). We tested Cold PI in the GC–MS analysis of diesel fuels and analyzed the time averaged data for group type information. We also found that we can analyze the diesel fuels by fast under 20‐s flow injection analysis in which the generated averaged mass spectrum of molecular ions only could serve for the characterization of fuels.  相似文献   

9.
谭国斌  黄正旭  高伟  周振 《分析化学》2013,41(10):1614-1619
本实验室研制了国内首台宽离子能量检测范围飞行时间质谱仪。仪器采用紧凑式电子轰击源设计,配合离子透镜系统有效的调制离子流,飞行时间质量分析器采用了离子垂直引入式,双场加速和双场反射以及大尺寸MCP检测装置设计。仪器单离子信号半峰宽约2 ns,仪器分辨率优于1600FWHM,检测实际样品质量范围为1~127 amu(仪器理论质量检测上限优于800 amu),可检测离子能量范围优于2个数量级(3~140 eV)。若该TOF质量分析器与短瞬高压脉冲放电离子源耦合联用,可广泛应用于高能离子束的快速检测,如真空阴极放电对制备薄膜、离子注入材料的表征,导电材料的离子电荷态分布以及离子扩散速度的测定等。  相似文献   

10.
We combine the technique of femtosecond degenerate four-wave mixing (fs-DFWM) with a high repetition-rate pulsed supersonic jet source to obtain the rotational coherence spectrum (RCS) of cold cyclohexane (C(6)H(12)) with high signal/noise ratio. In the jet expansion, the near-parallel flow pattern combined with rapid translational cooling effectively eliminate dephasing collisions, giving near-constant RCS signal intensities over time delays up to 5 ns. The vibrational cooling in the jet eliminates the thermally populated vibrations that complicate the RCS coherences of cyclohexane at room temperature [Brügger, G.; et al. J. Phys. Chem. A 2011, 115, 9567]. The rotational cooling reduces the high-J rotational-state population, yielding the most accurate ground-state rotational constant to date, B(0) = 4305.859(9) MHz. Based on this B(0), a reanalysis of previous room-temperature gas-cell RCS measurements of cyclohexane gives improved vibration-rotation interaction constants for the ν(32), ν(6), ν(16), and ν(24) vibrational states. Combining the experimental B(0)(C(6)H(12)) with CCSD(T) calculations yields a very accurate semiexperimental equilibrium structure of the chair isomer of cyclohexane.  相似文献   

11.
报道了新型空气动力辅助离子化(AFAI)装置与不同类型商业化质量分析器的快速接口技术. 在前期研究基础上, 进一步提高了AFAI系统的抽气流速, 在更宽范围内考察了流速对质谱灵敏度的影响; 对AFAI离子源进行模块化设计和制作, 重点解决快速接口问题, 通过更换接口板可实现其与不同厂家、 不同类型质量分析器的兼容及联用, 尤其可以与具有气帘接口的质量分析器联用. 本离子源装置结合不同质量分析器可以进行全扫描、 子离子扫描、 母离子扫描、 中性丢失扫描和高分辨等多种类型质谱分析, 而且AFAI可在电喷雾(ESI)、 解析电喷雾(DESI)和大气压化学电离(APCI)等多种离子化模式下工作, 从而实现对不同性质化合物的快速检测. 本研究结果进一步提高了AFAI离子化技术的功能, 拓展了其应用范围.  相似文献   

12.
We report on the high-efficiency surface-induced dissociation of benzene and cyclohexane polyatomic ions after scattering from a rhenium oxide surface with a kinetic energy of 5–290 eV. Rhenium oxide was prepared by directly heating a rhenium metal foil, under 10?5 mbar partial oxygen pressure, at about 1000 K. Rhenium oxide is characterized by a very high work function of 6.4 eV and thus minimizes ion reneutralization probabilities. The catalytic combustion of surface organic impurities with oxygen ensures good long-term stability. We found that the surface-induced dissociation ion current is 70 times larger on rhenium oxide than on bare rhenium or stainless steel. Absolute scattered ion yields of about 50% were measured. The implications of surface-induced dissociation on mass spectrometry in supersonic molecular beams are mentioned.  相似文献   

13.
The peroxyacetyl radical (PA, CH3C(O)OO) is generated by flash pyrolysis of peroxyacetyl nitrate (PAN, CH3C(O)OONO2) in a supersonic jet. The 0(0)(0) A2A' <-- X2A' electronic transition for PA, at ca. 5582 cm(-1), is detected in a supersonically cooled sample by time-of-flight mass spectroscopy in the CH3CO mass channel. Rotational envelope simulation results find that the rotational temperature for PA in its ground electronic and vibrational state is ca. 55 K. At ca. 330 degrees C, the thermal decomposition of PAN by flash pyrolysis in a heated nozzle with supersonic expansion is mainly by formation of PA and NO2. The maximum yield of PA is obtained at this temperature. At higher temperatures (300-550 degrees C), an intense signal in the CH2CO+ mass channel is observed, generated by the decomposition of PA.  相似文献   

14.
A new design of the Orbitrap mass analyzer is presented. Higher frequencies of ion oscillations and hence higher resolving power over fixed acquisition time are achieved by decreasing the gap between the inner and outer Orbitrap electrodes, thus providing higher field strength for a given voltage. Experimental results confirm maximum FWHM resolving power in excess of 350,000 at m/z 524 and 600,000 at m/z 195, isotopic resolution of proteins above 40 kDa, and a single-shot dynamic range of 25,000. It was also found that mass shifts in the new design depend very little on space charge inside the analyzer. This performance was achieved using higher voltages and by careful balancing of construction tolerances and operation parameters, which appeared to vary in narrower ranges of tuning than for a standard Orbitrap analyzer.  相似文献   

15.
Modeling study is performed to reveal the momentum and heat/mass transfer characteristics of a turbulent or laminar plasma reactor consisting of an argon plasma jet issuing into ambient air and interacting with a co-axially counter-injected argon jet. The combined-diffusion-coefficient method and the turbulence-enhanced combined-diffusion-coefficient method are employed to treat the diffusion of argon in the argon–air mixture for the laminar and the turbulent regimes, respectively. Modeling results presented include the streamline, isotherm and argon mass fraction distributions for the cases with different jet-inlet parameters and different distances between the counter-injected jet exit and the plasma torch exit. It is shown that there exists a quench layer with steep temperature gradients inside the reactor; a great amount of ambient air is always entrained into the plasma reactor; and the flow direction of the entrained air, the location and shape of the quench layer are dependent on the momentum flux ratio of the plasma jet to the counter-injected cold gas. Two quite different flow patterns are obtained at higher and lower momentum flux ratios, and thus there exists a critical momentum flux ratio to separate the different flow patterns and to obtain the widest quench layer. There exists a high argon concentration or even ‘air-free’ channel along the reactor axis. No appreciable difference is found between the turbulent and laminar plasma reactors in their overall plasma parameter distributions and the quench layer locations, but the values of the critical momentum flux ratio are somewhat different.  相似文献   

16.
A novel ion trap array (ITA) mass analyzer with six ion trapping and analyzing channels was investigated. It is capable of analyzing multiple samples simultaneously. The ITA was built with several planar electrodes made of stainless steel and 12 identical parallel zirconia ceramic substrates plated with conductive metal layers. Each two of the opposing ceramic electrode plates formed a boundary of an ion trap channel and six identical ion trapping and analyzing channels were placed in parallel without physical electrode between any two adjacent channels. The electric field distribution inside each channel was studied with simulation. The new design took the advantage of high precision machining attributable to the rigidity of ceramic, and the convenience of surface patterning technique. The ITA system was tested by using a two-channel electrospray ionization source, a multichannel simultaneous quadruple ion guide, and two detectors. The simultaneous analysis of two different samples with two adjacent ITA channels was achieved and independent mass spectra were obtained. For each channel, the mass resolution was tested. Additional ion trap functions such as mass-selected ion isolation and collision-induced dissociation (CID) were also tested. The results show that one ITA is well suited for multiple simultaneous mass analyses.   相似文献   

17.
Hydrogen fluoride analyzer for gases and aerosols   总被引:1,自引:0,他引:1  
Many fire suppression agents are currently used, and the replacement candidates for these agents contain fluorine atoms. When these agents are used to extinguish a fire, large quantities of hydrogen fluoride gas can be produced from the thermal degradation of fluorinated organic compounds. A real-time analyzer has been developed to measure exposure levels of hydrogen fluoride gas and aerosols during fire suppression tests. A vacuum pump pulls air through a continuous denuder, where the toxic gas and aerosols are extracted from the air into an aqueous trapping solution. The trapping solution then passes through a flow cell, where a fluoride ion-selective electrode measures the fluoride ion concentration. A solenoid pump moves the trapping solution and calibration standards through the analyzer. Once calibrated, the analyzer can generate a concentration profile of hydrogen fluoride versus time. This hydrogen fluoride analyzer is portable and can be calibrated in about 5 min. It provides rapid response to hydrogen fluoride gas and aerosols, over a detection range from 1 to 5000 mg/m3.  相似文献   

18.
We report on the use of a jet disrupter electrode in an electrodynamic ion funnel as an electronic valve to regulate the intensity of the ion beam transmitted through the interface of a mass spectrometer in order to perform automatic gain control (AGC). The ion flux is determined by either directly detecting the ion current on the conductance limiting orifice of the ion funnel or using a short mass spectrometry acquisition. Based upon the ion flux intensity, the voltage of the jet disrupter is adjusted to alter the transmission efficiency of the ion funnel to provide a desired ion population to the mass analyzer. Ion beam regulation by an ion funnel is shown to provide control to within a few percent of a targeted ion intensity or abundance. The utility of ion funnel AGC was evaluated using a protein tryptic digest analyzed with liquid chromatography Fourier transform ion cyclotron resonance (LC-FTICR) mass spectrometry. The ion population in the ICR cell was accurately controlled to selected levels, which improved data quality and provided better mass measurement accuracy.  相似文献   

19.
A gas chromatographic/time-of-flight mass spectrometric (GC/TOFMS) interface is being developed for fast on-line analysis utilizing multi-capillary column technology. A variable gap-distance jet separator has been constructed and its performance compared with that of a commercially supplied post-column open splitter recommended for use between the multi-capillary column and a mass spectrometer. Both interfaces were found to be compatible with the GC/TOFMS system at high carrier gas flow-rates, facilitating high-speed and high-resolution separations. The systems were investigated and tested with a mixture of volatile organic compounds (VOCs) with molecular masses from 85 to 166: dichloromethane, toluene, m-dichlorobenzene, o-dichlorobenzene and tetrachloroethylene. The optimum tip-to-tip gap distance corresponding to the highest efficiency of the jet separator was found to be 0.030 mm for each compound at carrier gas flow-rates of 20, 40 and 60 ml min(-1) giving, in the ion source housing, ion gauge pressure readings of 1.6 x 10(-6), 5.0 x 10(-6) and 5.8 x 10(-6) mbar, respectively. The efficiency of the jet separator (10-30% yields) was significantly higher than that of the open splitter (6-9% yields). The observation that the open splitter did not provide a constant flow-rate to the ion source was not in agreement with the manufacturer's specifications. A method for measuring the gas flow-rates in all parts of the equipment is described. The correlation between yield in the jet separator and molecular mass for the heterogeneous set of compounds studied was found to be less linear than usually reported for homologous series of compounds in jet separator studies. The result suggests that the pressure conditions in the jet may be sufficient for the separation process to be partly controlled by diffusion rather than predominately by effusion. Copyright 2000 John Wiley & Sons, Ltd.  相似文献   

20.
A new type of compact supersonic jet/resonance-enhanced multiphoton ionization/time-of-flight mass spectrometer is described. The analytical instrument, consisting of a single turbo molecular pump equipped with a rotary pump, was maintained at < 2 x 10(-3) Pa when a 0.3-atm sample was injected into a vacuum at 10-Hz using a 200-micros pulse valve. The diameters of the extraction and ground skimmer electrodes were expanded to 30 mm in order to avoid strong focusing and defocusing of the ion, and the optimum conditions for the system were investigated. The mass spectrometer functioned as expected: (1) no defocusing of the ion beam was observed even when the potential of the einzel lens was adjusted to zero; (2) the direction of the ion beam to an assembly of microchannel plates deviated in the expected manner when the potential of the defection electrode was changed from 0 to 30 V.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号