首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A Hamiltonian version has been formulated for the model of a potential jet stream of a homogeneous incompressible fluid with a free boundary. In the framework of this model, instability regimes have been analyzed. It has been shown that self-similar solutions with a compact support can be dominant structures. Analysis of the instability mechanism shows that two collapse scenarios are possible. The first scenario occurs without the deformation of the shape and leads to an intensification of the vortex sheet according to the law (t 0 ? t)?1, where t 0 is the collapse time. The second scenario leads to the formation of a singularity for the surface shape and to a decrease in the intensity of the vortex sheet according to the laws (t 0 ? t)?1/5 and (t 0 ? t)1/5, respectively. The integral collapse criterion has been found.  相似文献   

2.
We consider the development of inhomogeneity in the isothermal collapse of protostellar clouds. The initial and boundary conditions correspond to the classical statement of the problem on the contraction of a homogeneous cloud from a given volume. A centered rarefaction wave is shown to propagate from the outer boundary of the cloud toward its center at the first collapse stage. Analysis reveals two possible regimes of isothermal collapse, depending on the relationship between the rarefaction wave focusing time t* and the cloud free-fall collapse time tff. For cold clouds, t*=t ff and the rarefaction wave is not reflected. In this case, as time elapses, the cloud collapse becomes self-similar with the characteristic density profile ρ~r?2. In hot clouds, t*<t ff and the focusing can take place before the formation of an opaque core. Since the velocities of the rarefaction wave along and across magnetic field lines in a magnetized cloud are different, its front assumes a shape elongated along magnetic field lines. Depending on the initial conditions, based on analytical estimates, we investigate various possible scenarios for the collapse of magnetic protostellar clouds.  相似文献   

3.
Anomalous diffusion is researched within the framework of the coupled continuous time random walk model, in which the space-time coupling is considered through the correlated function g(t) ~ t γ , 0 ≤ γ< 2, and the probability density function ω(t) of a particle’s transition time t follows a power law for large t: ω(t) ~ t ? (1 + α),1 <α< 2. The bi-fractional generalized master equation is derived analytically which can be applied to describe the transient bi-fractional diffusion phenomenon which is induced by the space-time coupling and the asymptotic behavior of ω(t). Numerical results show that for the transient bi-fractional diffusion, there is a transition from one fractional diffusion to another one in the diffusive process.  相似文献   

4.
This article is concerned with characterizing the first extremal point, b0, for a Riemann–Liouville fractional boundary value problem, Dα0+y + p(t)y = 0, 0 < t < b, y(0) = y(0) = y(b) = 0, 2 < α ≤ 3, by applying the theory of u0-positive operators with respect to a suitable cone in a Banach space. The key argument is that a mapping, which maps a linear, compact operator, depending on b to its spectral radius, is continuous and strictly increasing as a function of b. Furthermore, an application to a nonlinear case is given.  相似文献   

5.
We investigate a system of coupled oscillators on the circle, which arises from a simple model for behavior of large numbers of autonomous vehicles where the acceleration of each vehicle depends on the relative positions and velocities between itself and a set of local neighbors. After describing necessary and sufficient conditions for asymptotic stability, we derive expressions for the phase velocity of propagation of disturbances in velocity through this system. We show that the high frequencies exhibit damping, which implies existence of well-defined signal velocitiesc+ > 0 and c? < 0 such that low frequency disturbances travel through the flock as f+(x ? c+t) in the direction of increasing agent numbers and f?(x ? c?t) in the other.  相似文献   

6.
A personal history of the first applications of CTRW to the physics of transport and diffusion in disordered media is presented. The sequence of steps leading to the introduction of novel ψ(t), the probability density of particle-transfer times, without moments is briefly outlined. The key concept that emerged from those early applications is anomalous or non-Fickian transport. The latter involved spatial moments of the particle propagator with completely different time behavior, e.g., the mean <l> ∝ t β , 0 < β < 1 and likewise σ the rms spreading, i.e., <l>∕σ = constant. With these results many puzzling experimental data were explained. The data ranged from electronic dynamics of amorphous films to chemical migration and interaction in the subsurface of the Earth. These were not anticipated results but a consequence of the CTRW with these special ψ(t).  相似文献   

7.
A formula for the contribution ΔG res(T) to the resonant tunneling conductance of the N–I–N junction (where N is a normal metal and I is an insulator) with a weak (low impurity concentrations) structural disorder in the I layer from the low-temperature “smearing” electron Fermi surfaces in its N shores is obtained. It is shown that the temperature dependence ΔG res(T) in such a “dirty” junction qualitatively differs from the corresponding dependence ΔG 0(T) in a “pure” (without resonant impurities in the I layer) junction: ΔG res(T) < 0, dG res)/dT < 0; ΔG 0(T) > 0, dG 0)/dT > 0, which can serve as an experimental test of the presence of impurity tunneling resonances in the disordered I layer.  相似文献   

8.
9.
Complex permittivity ε*/ε0 = ε′/ε0iε″/ε0 of the bismuth–lanthanum manganite Bi0.6La0.4MnO3 ceramics has been measured in the temperature range of 10–220 K at frequencies f = 20–106 Hz and magnetic inductions B = 0–0.846 T. At a temperature of 80 K, the spectra ε′/ε0(t) and ε″/ε0(t) demonstrate the dielectric relaxation that is a superposition of contributions of several relaxation processes, each of which is dominant in its frequency range: I (f < 103 Hz, II (103 < f < 105 Hz), and III (105 < f < 106 Hz). In the range of 10–120 K, anomalous behavior of ε′/ε0(T) and ε″/ε0(T) is observed near the temperature of the transition from the paramagnetic to ferromagnetic phase and is due to the Anderson localization of charge carrier on a spin disorder.  相似文献   

10.
The dimension D of a polycrystalline film and the optical anisotropy m = εzx of uniaxial crystallites with the principal components εx = εy and εz of the tensor of the dielectric constant have been shown to produce a strong influence on the effective dielectric constant εD* and the effective refractive index nD* = (εD*)1/2 of the film in the optical transparency region, as well as on the boundaries of the intervals BDl ≤ εD*BDu. The intervals Δ2(m) = B2lB2u and Δ3(m) = B3lB3u are separated by a gap for m in the range 1 < m < 2, whereas the theoretical dependence ε2*(m) is separated by a gap from the interval Δ3(m) for m in the range 1 < m < 4. This is confirmed by a comparison of the experimental (noP) and theoretical (nD*) ordinary refractive indices for uniaxial polycrystalline films of the conjugated polymer poly(p-phenylene vinylene) (PPV) with uniaxial crystallites and appropriate values of m. In the visible transparency region of the PPV films with a change in m(λ) in the range 2 < m(λ) < 3 due to the dependence of the components εx,z(λ) on the light wavelength λ, the refractive indices noP2(λ) = εoP(λ) are consistent with the theoretical values of ε2*(λ) and lie outside the interval Δ3(m). For m(λ) > 3 near the electronic absorption band of the crystallites, the values of εoP(λ) lie in the region of the overlap of the intervals Δ2(m) and Δ3(m). The boundaries mc of the range 1 < m < mc are determined, for which the interval Δ2(m) is separated by a gap from the dependences ε3*(m) corresponding to the effective medium theory with spherical crystallites and hierarchical models of a polycrystal, as well as from the proposed new dependence ε3*(m).  相似文献   

11.
We show that the superconducting transition temperature T c (H) of a very thin highly disordered film with strong spin-orbital scattering can be increased by a parallel magnetic field H. This effect is due to the polarization of magnetic impurity spins, which reduces the full exchange scattering rate of electrons; the largest effect is predicted for spin-1/2 impurities. Moreover, for some range of magnetic impurity concentrations, the phenomenon of superconductivity induced by magnetic field is predicted: the superconducting transition temperature T c (H) is found to be nonzero in the range of magnetic fields 0 < H* ≤ HH c .  相似文献   

12.
The problem of developing relations that allow us to increase the accuracy of estimates for energy E of a pulsed source of acoustic waves in the atmosphere is solved by generalizing experimental data on time t R+ of pressure growth to the peak value P + in the first positive phase of acoustic signals from different sources in a wide range of energies (10?8 < E < 1010 kg of TNT) and reduced distances (10 < RE ?1/3 < 4 × 104 m kg?1/3). In addition to a new way of estimating energy E of a pulsed source, a way of estimating distance R from the source is also proposed. Innovative science also reveals a change in the law of the increase in parameter t R+ as distance R from a source grows.  相似文献   

13.
The time evolution of the water–disordered nanoporous medium Libersorb 23 (L23) system has been studied after complete filling at elevated pressure followed by full release of overpressure. It is established that relaxation of the L23 rapidly flows out during the overpressure relief time, following the variation in pressure. At a temperature below that of the dispersion transition (T < T d = 284 K), e.g., at T = 277 K, the degree of filling θ decreases from 1 to 0.8 within 10 s. The degree of filling varies with time according to the power law θ ~ t –α with the exponent α < 0.1 over a period of t ~ 105 s. This process corresponds to slow relaxation of a metastable state of a nonwetting liquid in a porous medium. At times t > 105 s, the metastable state exhibits decay, manifested as the transition to a power dependence of θ(t) with a larger exponent. The relaxation of the metastable state of nonwetting liquid in a disordered porous medium is described in the mean field approximation as a continuous sequence of metastable states with a barrier decreasing upon a decrease in the degree of filling. Using this approach, it is possible to qualitatively explain the observed relaxation process and crossover transition to the stage described by θ(t) with a larger exponent.  相似文献   

14.
The problem of magnetic field penetration into the half-space is considered in parallel geometry in an external magnetic field increasing with time in accordance with the law B(0, t, τ0 = B c 1 (1 + t0) m , m ≥ 0, t ≥ 0 (τ 0 is the time of magnetic flux redistribution and B c 1 is the lower critical field). It is assumed that the flow of vortices is thermally activated in the “giant” creep mode (i.e., for weak pinning creep and high temperatures). A model equation is derived for describing the magnetic flux evolution. Analytic formulas are obtained for the depth and velocity of magnetic field penetration. It is shown that the giant creep regime is stable for 0 ≤ m ≤ 1/2.  相似文献   

15.
We discuss the scenario where the X(3872) resonance is the \(c\bar c\) = χc1(2P) charmonium which “sits on” the D*0\({\bar D^0}\) threshold. We explain the shift of the mass of the X(3872) resonance with respect to the prediction of a potential model for the mass of the χc1(2P) charmonium by the contribution of the virtual D*\(\bar D\) + c.c. intermediate states into the self energy of the X(3872) resonance. This allows us to estimate the coupling constant of the X(3872) resonance with the D*0\({\bar D^0}\) channel, the branching ratio of the X(3872) → D*0\({\bar D^0}\) + c.c. decay, and the branching ratio of the X(3872) decay into all non-D*0\({\bar D^0}\) + c.c. states. We predict a significant number of unknown decays of X(3872) via two gluon: X(3872) → gluongluonhadrons. We suggest a physically clear program of experimental researches for verification of our assumption.  相似文献   

16.
We investigate the linear thermoelectric response of an interacting quantum dot side-coupled by one of two Majorana modes hosted by a topological superconducting wire. We employ the numerical renormalization group technique to obtain the thermoelectrical conductance L in the Kondo regime while the background temperature T, the Majorana-dot coupling Γ m , and the overlap ε m between the two Majorana modes are tuned. We distinguish two transport regimes in which L displays different features: the weak- (Γ m <T K ) and strong-coupling (Γ m >T K ) regimes, where T K is the Kondo temperature. For an infinitely long nanowire where the Majorana modes do not overlap (ε m = 0), the thermoelectrical conductance in the weak-coupling regime exhibits a peak at T ~ Γ m <T K . This peak is ascribed to the anti-Fano resonance between the asymmetric Kondo resonance and the zero-energy Majorana bound state. In the strong-coupling regime, on the other hand, the Kondo-induced peak in L is affected by the induced Zeeman splitting in the dot. For finite but small overlap (0 <ε m <Γ m ), the interference between the two Majorana modes restores the Kondo effect in a smaller energy scale Γ′ m and gives rise to an additional peak in Γ ~ Γ′ m, whose sign is opposite to that at T ~ Γ m . In the strong-coupling regime this additional peak can cause a non-monotonic behavior of L with respect to the dot gate. Finally, in order to identify the fingerprint of Majorana physics, we compare the Majorana case with its counterpart in which the Majorana bound states are replaced by a (spin-polarized) ordinary bound state and find that the thermoelectric features for finite ε m are the genuine effect of the Majorana physics.  相似文献   

17.
We investigate a Lévy walk alternating between velocities ±v 0 with opposite sign. The sojourn time probability distribution at large times is a power law lacking its mean or second moment. The first case corresponds to a ballistic regime where the ensemble averaged mean squared displacement (MSD) at large times is ?x 2? ∝ t 2, the latter to enhanced diffusion with ?x 2? ∝ t ν, 1 < ν < 2. The correlation function and the time averaged MSD are calculated. In the ballistic case, the deviations of the time averaged MSD from a purely ballistic behavior are shown to be distributed according to a Mittag-Leffler density function. In the enhanced diffusion regime, the fluctuations of the time averages MSD vanish at large times, yet very slowly. In both cases we quantify the discrepancy between the time averaged and ensemble averaged MSDs.  相似文献   

18.
19.
Phase transitions (PTs) and frustrations in two-dimensional structures described by a three-vertex antiferromagnetic Potts model on a triangular lattice are investigated by the Monte Carlo method with regard to nearest and next-nearest neighbors with interaction constants J1 and J2, respectively. PTs in these models are analyzed for the ratio r = J2/J1 of next-nearest to nearest exchange interaction constants in the interval |r| = 0–1.0. On the basis of the analysis of the low-temperature entropy, the density of states function of the system, and the fourth-order Binder cumulants, it is shown that a Potts model with interaction constants J1 < 0 and J2 < 0 exhibits a first-order PT in the range of 0 ? r < 0.2, whereas, in the interval 0.2 ? r ? 1.0, frustrations arise in the system. At the same time, for J1 > 0 and J2 < 0, frustrations arise in the range 0.5 < |r| < 1.0, while, in the interval 0 ? |r| ? 1/3, the model exhibits a second-order PT.  相似文献   

20.
A square lattice of microcontacts with a period of 1 μm in a dense low-mobility two-dimensional electron gas is studied experimentally and numerically. At the variation of the gate voltage V g , the conductivity of the array varies by five orders of magnitude in the temperature range T from 1.4 to 77 K in good agreement with the formula σ(V g ) = (V g ?V g * (T))β with β = 4. The saturation of σ(T) at low temperatures is absent because of the electron–electron interaction. A random-lattice model with a phenomenological potential in microcontacts reproduces the dependence σ(T, V g ) and makes it possible to determine the fraction of microcontacts x(V g , T) with conductances higher than σ. It is found that the dependence x(V g ) is nonlinear and the critical exponent in the formula σ ∝ ? (x - 1/2) t in the range 1.3 < t(T, V g ) < β.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号