首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure of the sodium-rich representative of the eudialyte group found by A.P. Khomyakov at the Lovozero massif (Kola Peninsula) is studied by X-ray diffraction. The trigonal cell parameters are: a = 14.2032(1) and c = 60.612(1) Å, V = 10589.13 Å3, space group R3m. The structure is refined to the final R = 5.0% in the anisotropic approximation of atomic displacement parameters using 3742|F| > 3σ(F). The idealized formula (Z = 3) is Na37Ca10Mn2FeZr6Si50(Ti, Nb)2O144(OH)5Cl3 · H2O. Like other 24-layer minerals of the eudialyte group, this mineral has a modular structure. Its structure contains two modules, namely, “alluaivite” (with an admixture of “eudialyte”) and “kentbrooksite,” called according to the main structural fragments of alluaivite, eudialyte, and kentbrooksite. The mineral found at the Lovozero alkaline massif shows some chemical and symmetry-structural distinctions from the close-in-composition labyrinthite modular mineral from the Khibiny massif. The difference between the minerals stems from different geochemical conditions of mineral formation in the two regions.  相似文献   

2.
The crystal structure of a new highly decationated representative of the eudialyte group has been established (R = 0.055, 1734 |F|). The mineral is described by the simplified formula (H3O)9Na2(K, Ba,Sr)2Ca6Zr3[Si26O66(OH)6](OH)3Cl · H2O (Z = 3). The unit-cell parameters are a = 14.078(3) Å, c = 31.24(1) Å; V = 5362 Å3; sp. gr. R3. Being chemically and structurally related to the hydrated analogues studied previously (in particular, to potassium oxonium eudialyte), the new mineral differs from its analogues in that it has a higher degree of Na-and Fe-cation depletion. The replacement of 3/4 of Na cations by loose and mobile H3O groups results in structure destabilization, which is seen from the high values of the thermal parameters of the atoms and the loss of the symmetry plane.  相似文献   

3.
The structure of the mineral parakeldyshite Na1.93ZrSi2O6.93(OH)0.07 is refined by X-ray diffraction analysis. The main crystallographic data are as follows: space group P \(\overline 1 \), a = 6.617(2) Å, b = 8.813(1) Å, c = 5.426(1) Å, α = 87.26(3)°, β = 85.68(3)°, γ = 71.45(3)°, and R F = 0.0153. The initial structural model of this mineral is confirmed. Within this model, the structure of parakeldyshite is based on the heteropolyhedral framework formed by [Si2O7] diorthogroups, which are linked together through isolated zirconium octahedra. The fundamental difference between the structure under investigation and the initial structural model is associated with the arrangement of the extraframework cations. A comparative crystal chemical analysis of the zirconium silicates with [Si2O7] diorthogroups is performed.  相似文献   

4.
The crystal structure of new synthetic aluminosilicate |Na7.38(AlF6)0.70(H2O)4.88|[(Si6.74Al5.26)O24]-SOD, which was obtained by hydrothermal synthesis (T = 650° C, P = 2 Kbar) in the Si-Al-Na-F-H2O system, has been found by X-ray diffraction (Xcalibur-S-CCD diffractometer, 2θmax = 64.99°, R = 0.037 for 440 reflections): a = 9.0461(1) Å, sp. gr. P \(\bar 4\)3m, Z = 1, and ρcalcd = 2.370 g/cm3. The disordered Si,Al-tetrahedral framework (the structural basis of the new compound) is topologically identical to the framework of mineral sodalite. Na+ cations, [AlF6]3? anions, and H2O molecules occupy framework voids. The form of fluorine incorporation into the sodalite crystal structure (as octahedral aluminofluoride complexes) has been reliably established for the first time.  相似文献   

5.
An abnormally titanium-rich mineral of the eudialyte group was studied by IR spectroscopy and X-ray diffraction. The trigonal unit cell parameters are a = 14.165(1) Å, c = 30.600(5) Å, V = 5317.23(4) Å3, sp. gr. R3m. The crystal structure was refined to R = 0.034 with anisotropic displacement parameters using 2530 reflections with F > 3σ(F). The idealized formula of the mineral (Z = 3) is Na8(H3O)5(K,Ce,Sr)2Ca6Zr2Ti1.2(Fe,Mn)0.6Si26O72(OH)2Cl · 4H2O. At the ratio Zr: Ti ~ 2: 1, titanium atoms lie in four sites and are not predominant in any of them. Another distinguishing feature of the mineral is the structural separation of chemical elements, such that K, Sr, and Ce cations and H3O groups are randomly distributed between four split sites to form polyhedra with different volumes. The isomorphism of Zr and Ti in eudialyte-group minerals is discussed.  相似文献   

6.
The crystal structure of golyshevite, a new calcium-and carbon-rich representative of the eudialyte group, was established by single-crystal X-ray diffraction analysis (sp. gr. R3m, a = 14.231(3) Å, c = 29.984(8) Å, R = 0.062, 1643 reflections with F > 3σ(F)). The idealized formula of golyshevite is (Na10Ca3)Ca6Zr3Fe2SiNb[Si3O9]2[Si9O27]2(OH)3(CO3) · H2O. This mineral is characterized by the presence of calcium atoms both in the octahedral positions of six-membered rings and in extraframework positions, where calcium prevails. CO3 groups are present as the major additional anions. Carbon atoms randomly occupy two positions on the threefold z axis at a distance of 0.75 Å from each other and are coordinated by oxygen atoms arranged around the z axis.  相似文献   

7.
The high-sodium variety of cancrinite [Si6.3Al5.7O24][Na2(H2O)2][Na5.7(CO3)0.9(SO4)0.1(H2O)0.6] (Kovdor Massif, Kola Peninsula, Russia) and the calcium-containing variety of cancrisilite [Si6.6Al5.4O24][(Na1.2Ca0.4)(H2O)1.6][Na6(CO3)1.3(H2O)1.2] (Khibiny Massif, Kola Peninsula, Russia) are studied. The trigonal unit cell parameters of the crystal structures under investigation are as follows: a = 12.727(4) Å, c = 5.186(2) Å, and space group P3 for the former mineral and a = 12.607(4) Å, c = 5.111(1) Å, and space group P3 for the latter mineral. The reduced symmetry of the new varieties as compared to the symmetry of typical cancrinite and typical cancrisilite is associated with the specific features in the arrangement of the carbonate groups and water molecules in channels. This inference is confirmed by the IR spectroscopic data.  相似文献   

8.
The pyroxferroite and pyroxmangite from xenoliths of aluminous gneisses in the alkaline basalts of Bellerberg paleovulcano (Eifel, Germany) have been studied by electron-probe and X-ray diffraction methods and IR spectroscopy. The parameters of the triclinic unit cells are found to be a = 6.662(1) Å, b = 7.525(1) Å, c = 15.895(2) Å, α = 91.548(3)°, β = 96.258(3)°, and γ = 94.498(3)° for pyroxferroite and a = 6.661(3) Å, b = 7.513(3) Å, c = 15.877(7) Å, α = 91.870(7)°, β = 96.369(7)°, and γ = 94.724(7)° for pyroxmangite; sp. gr. \(P\overline 1 \). The crystallochemical formulas (Z = 2) are, respectively, M(1–2)(Mn0.5Ca0.4Na0.1)2M(3–6)(Fe, Mn)4M7[Mg0.6(Fe, Mn)0.4][Si7O21] and M(1–3)(Mn, Fe)3M(4–6)[(Fe, Mn)0.7Mg0.3]3M7[Mg0.5(Fe, Mn)0.5][Si7O21]. For these and previously studied representatives of the pyroxmangite structural type, an analysis of the cation distribution over sites indicates wide isomorphism of Mn2+, Fe2+, and Mg in all cation M(1–7) sites and the preferred incorporation of Сa and Na into large seven-vertex M1O7 and M2O7 polyhedra and Mg into the smallest five-vertex M7O5 polyhedron.  相似文献   

9.
The crystal structure of the mineral byelorussite-(Ce) NaMnBa2Ce2Ti2Si8O26(F,OH) · H2O belonging to the joaquinite group was solved and refined to R = 0.033 based on 4813 reflections with I > σ2(I). The parameters of the orthorhombic unit cell are a = 22.301(4) Å, b = 10.514(2) Å, c = 9.669(2) Å, V = 2267.1(8) Å3, sp. gr. Ama2, and Z = 4. The structure is composed of three-layer sheets, which consist of dimers of edge-sharing Ti octahedra located between isolated four-membered [Si4O2] rings. The sheets are linked to each other by Mn 5-vertex polyhedra to form a heteropolyhedral framework. Large cavities in the framework are occupied by Na 6-vertex polyhedra, Ba 11-vertex polyhedra, and REE 9-vertex polyhedra.  相似文献   

10.
A specimen of a new representative of the palygorskite-sepiolite family from Aris phonolite (Namibia) is studied by single-crystal X-ray diffraction. The parameters of the triclinic (pseudomonoclinic) unit cell are as follows: a = 5.2527(2) Å, b = 17.901(1) Å, c = 13.727(1) Å, α = 90.018(3)°, β = 97.278(4)°, and γ = 89.952(3)°. The structure is solved by the direct methods in space group P \(\bar 1\) and refined to R = 5.5% for 4168 |F| > 7σ(F) with consideration for twinning by the plane perpendicular to y (the ratio of the twin components is 0.52: 0.48). The crystal chemical formula (Z = 1) is (Na1.6K0.2Ca0.2)[Ca2(Fe 3.6 2+ Al1.6Mn0.8)(OH)9(H2O)2][(Fe 3.9 2+ Ti0.1)(OH)5(H2O)2][Si16O38(OH)2] · 6H2O, where the compositions of two ribbons of octahedra and a layer of Si tetrahedra are enclosed in brackets. A number of specific chemical, symmetrical, and structural features distinguish this mineral from other minerals of this family, in particular, from tuperssuatsiaite and kalifersite, which are iron-containing representatives with close unit cell parameters.  相似文献   

11.
The crystal structures of synthetic tourmalines with a unique composition containing 3d elements (Ni, Fe, and Co) have been refined: (Ca0.12?0.88)(Al1.69Ni 0.81 2+ Fe 0.50 2+ )(Al5.40Fe 0.60 3+ )(Si5.82Al0.18O18)(BO3)3(OH)3.25O0.75 I, a = 15.897(5), c = 7.145(2) Å, V = 1564(1) Å; Na0.91(Ni 1.20 2+ Cr 0.96 3+ Al0.63Fe 0.18 2+ Mg0.03)(Al4.26Ni 1.20 2+ Cr 0.48 3+ Ti0.06)(Si5.82Al0.18)O18(BO3)3(OH)3.73O0.27 II, a = 15.945(5), c = 7.208(2) Å, V = 1587(1) Å3 and Na0.35(Al1.80Co 1.20 2+ )(Al5.28Co 0.66 2+ Ti0.06)(Si5.64B0.36)O18(BO3)3(OH)3.81O0.19 III, a = 15.753(8), c = 7.053(3) Å, V = 1516(2) Å3. The reliability factors are R 1 = 0.038?0.057 and wR 2 = 0.041–0.060. It is found that 3d elements occupy both Y- and Z positions in all structures. The excess positive charge is compensated for due to the incorporation of divalent oxygen anions into the O3(V)+O1(W) positions.  相似文献   

12.
The crystal structure of a pure natrolite sample, Na2(Al2Si3O10)·2H2O, coming from Asheken, Ethiopia, has been analysed by single crystal X-ray diffraction. It crystallizes within the orthorhombic space group Fdd2, with the following cell constants: a = 18.2930(2) Å; b = 18.6430(5) Å; c = 6.5860(5) Å; V = 2246.07(18) Å3. The three-dimensional framework of this hydrated aluminosilicate zeolite is made up by chains of corner-sharing SiO4 and AlO4 tetrahedra down c; the chains are held together by sharing the external vertices of tetrahedra; water molecules and Na+ extra-framework cations fill up the resulting cavities, the latter forming irregular NaO6 octahedra. Hydrogen bonds complete the array.  相似文献   

13.
The crystal structure of the mineral vyuntspakhite (Y, TR)6{Al2(OH)3[H1.48Si1.88O7][SiO4][SiO3(OH)]}2(a = 5.7551(11) Å, b = 14.752(3) Å, c = 15.906(4) Å, β = 96.046(4)°, sp. gr. P21/n, Z = 2), which had been established earlier in the pseudo-unit cell, is redetermined by X-ray diffraction (R = 0.040, T = 100 K). The redetermination of the structure shows that pronounced pseudotranslation along the axis c′ = c/3 is associated with the fact that Y(TR) atoms are related by a 1/3 translation along the [001] direction. Most of the hydrogen atoms are located. The crystal-chemical function of hydrogen bonds is analyzed. In the unit cell of vyuntspakhite, the cationic layers consisting of edge-sharing (Y,TR) eight-vertex polyhedra alternate along the b axis with mixed anionic layers composed of isolated Si tetrahedra (orthotetrahedra), Si2O7 double-tetrahedra (diortho) groups, Al five-vertex polyhedra, and Al2O8 double-tetrahedra groups linked by shared vertices and through hydrogen bonding.  相似文献   

14.
An accurate structure analysis of a Ba3TaGa3Si2O14 single crystal from langasite family was performed using four X-ray diffraction data sets collected on a diffractometer equipped with a CCD area detector (sp. gr. P321, Z = 1, sinθ/λ ≤ 1.35 Å–1; at 295 K a = 8.516(1) Å, c = 5.1910(6) Å, R/wR = 0.58/0.56%, Δρmin/Δρmax =–0.73/0.42 e/Å3, 4414 independent reflections; at 106 K a = 8.5109(9) Å, c = 5.1861(9) Å, R/wR = 0.75/0.86%, Δρmin/Δρmax =–0.81/1.06 e/Å3, 4382 reflections). The distinguishing feature of the Ba3TaGa3Si2O14 structure is a strong disorder of the Ga atom at the 3f site. Structural transformations in the series of Сa3TaGa3Si2O14–Sr3TaGa3Si2O14–Ba3TaGa3Si2O14–Ba3TaFe3Si2O14 crystals were analyzed.  相似文献   

15.
The crystal structure of Zn-containing greifensteinite from the Pirineus Mine (Minas Gerais, Brazil) was refined (R = 0.045, 562 reflections with |F| > 2σ(F)). The unit-cell parameters are a = 15.941(3) Å, b = 11.877(3) Å, c = 6.625(2) Å, β = 95.09(2)°; V = 1249.4 Å3; sp. gr. C2/c; and Z = 2. The idealized formula is [Mn(Fe2+, Zn)4]Ca2Be4(PO4)6(OH)4 · 6H2O. The mineral is isostructural with the previously studied monoclinic representatives of the roscherite group from different deposits and differs from these representatives in that it contains Zn in one of two octahedral positions.  相似文献   

16.
An accurate structure analysis of Sr3NbGa3Si2O14 single crystals, belonging to the langasite family, has been performed. Two datasets are obtained on an Xcalibur S diffractometer equipped with a CCD detector. The structure is been refined using an averaged dataset: sp. gr. P 321, Z = 1, 295 K, sin θ/λ ≤ 1.35 Å–1, a = 8.2797(3) Å, c = 5.0774(5) Å; the agreement factors between the model and experiment are found to be R/wR = 0.76/0.64% and Δρmin/Δρmax =–0.21/0.17 e/Å3 for 3820 independent ref lections. The Sr3NbGa3Si2O14 and Sr3NbFe3Si2O14 structures are compared, and the role of magnetic ions in the predicted P321 → P3 phase transition is analyzed.  相似文献   

17.
A series of new coordination compounds has been synthesized using the organic ligand 1,2-dimethoxy-4,5-bis(2-pyridylethynyl)benzene (dmpeb). The compounds all form dimers consisting of two metal cations bridged by two ligand molecules. Charge balance is provided by halide ligands, and the four-coordinate metal centers are distorted from the ideal tetrahedral environment. [CoCl2(dmpeb)]2 (1) crystallizes in the monoclinic space group P21/n with a = 8.5272(6) Å, b = 18.3653(13) Å, c = 13.3493(9) Å, β = 103.574(2)°, V = 2032.2(2) Å3, Z = 2. [ZnCl2(dmpeb)]2 (2) is isostructural to 1 and has the cell parameters a = 8.5495(4) Å, b = 18.4049(8) Å, c = 13.3692(6) Å, β = 103.4460(10)°, V = 2046.01(16) Å3, Z = 2. [ZnBr2(dmpeb)]2 (3) is also isostructural to 1 with a = 8.7882(5) Å, b = 18.7260(12) Å, c = 13.3857(8) Å, β = 102.5990(10)°, V = 2149.8(2) Å3, Z = 2. Additionally, the compounds [ZnI2(dmpeb)]2 (4, cell parameters: a = 8.9650(5) Å, b = 19.1251(10) Å, c = 13.4160(7) Å, β = 101.1660(10)°, V = 2256.7(2) Å3, Z = 2), [HgCl2(dmpeb)]2 (5, cell parameters: a = 8.8457(7) Å, b = 18.4030(15) Å, c = 13.3711(11) Å, β = 104.246(2)°, V = 2109.7(3) Å3, Z = 2), and [HgBr2(dmpeb)]2 (6, cell parameters: a = 9.0576(5) Å, b = 18.8634(11) Å, c = 13.4535(8) Å, β = 102.9780(10)°, V = 2239.9(2) Å3, Z = 2) are also isostructural to 1. A seventh dimeric compound, [HgI2(dmpeb)]2, not isostructural to the others was also characterized by X-ray crystallography. [HgI2(dmpeb)]2 (7) crystallizes in the triclinic space group P-1 with a = 8.8028(5) Å, b = 12.0990(7) Å, c = 12.4082(7) Å, α = 109.7240(10)°, β = 107.3680(10)°, γ = 93.0880(10)°, V = 1169.57(12) Å3, Z = 1.  相似文献   

18.
The crystal structure of an aluminum-rich variety of the mineral rondorfite with the composition Ca16[Mg2(Si7Al)(O31OH)]Cl4 from the skarns of the Verkhne-Chegemskoe plateau (the Kabardino-Balkarian Republic, the Northern Caucasus Region, Russia) was solved in the triclinic space group with the unit-cell parameters a = 15.100(2) Å, b = 15.110(2) Å, c = 15.092(2) Å, α = 90.06(1)°, β = 90.01(1)°, γ = 89.93(1)°, Z = 4, sp. gr. P1. The structural model consisting of 248 independent atoms was determined by the phase-correction method and refined to R = 3.8% with anisotropic displacement parameters based on all 7156 independent reflections with 7156 F > 3σ(F). The crystal structure is based on pentamers consisting of four Si tetrahedra linked by the central Mg tetrahedron. The structure can formally be refined in the cubic space group (a = 15.105 Å, sp. gr. Fd \(\overline 3 \), seven independent positions) with anisotropic displacement parameters to R = 2.74% based on 579 reflections with F > 3σ(F) without accounting for more than 1000 observed reflections, which are inconsistent with the cubic symmetry of the crystal structure.  相似文献   

19.
The absolute crystal structure of the Ca3TaGa3Si2O14 piezoelectric compound is refined using X-ray diffraction analysis. The unit cell parameters and final R factors are as follows: a = 8.112(1) Å, c = 4.9862(6) Å, space group P321, Z = 1, R = 0.98%, and R w = 1.42%. It is shown that the configuration of the absolute crystal structure inherited from the seed material determines the positive sense of the optical activity of the crystal under investigation. The structural and acoustical characteristics of the Ca3TaGa3Si2O14 crystals are compared with those of the La3Ga5SiO14 crystals.  相似文献   

20.
A series of Cr4+:CaMgSiO4 single crystals is grown using floating zone melting, and their microstructure, composition, and crystal structure are investigated. It is shown that regions with inclusions of second phases, such as forsterite, akermanite, MgO, and Ca4Mg2Si3O12, can form over the length of the sample. The composition of the single-phase regions of the single crystals varies from the stoichiometric monticellite CaMgSiO4 to the solid solution Ca(1 ? x)Mg(1 + x)SiO4(x = 0.22). The Cr:(Ca0.88Mg0.12)MgSiO4 crystal is studied using X-ray diffraction. It is revealed that, in this case, the olivine-like orthorhombic crystal lattice is distorted to the monoclinic lattice with the parameters a = 6.3574(5) Å, b = 4.8164(4) Å, c = 11.0387(8) Å, β = 90.30(1)o, Z = 4, V = 337.98 Å3, and space group P21/c. In the monoclinic lattice, the M(1) position of the initial olivine structure is split into two nonequivalent positions with the center of symmetry, which are occupied only by Mg2+ cations with the average length of the Mg-O bond R av = 2.128 Å. The overstoichiometric Mg2+ cations partially replace Ca2+ cations (in the M(2) position of the orthorhombic prastructure) with the average bond length of 2.347 Å in the [(Ca,Mg)-O6] octahedron. The average distance in SiO4 distorted tetrahedra is 1.541 Å.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号