首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary.  Clostripain digestion of sperm whale apomyoglobin does not yield a heme binding fragment, contrary to horse heart apomyoglobin, from which mini-myoglobin has been obtained by this approach. However, in pepsin digests of sperm whale apomyoglobin we identified two fragments closely corresponding to the polypeptide encoded by the central exon of the myoglobin gene. One of these fragments consisting of 77 amino acid residues was purified. Spectroscopic data indicate that it has heme binding properties. Received October 28, 1999. Accepted November 23, 1999  相似文献   

2.
BACKGROUND: Pancreatic amyloid has been associated with type II diabetes. The major constituent of pancreatic amyloid is the 37-residue peptide islet amyloid polypeptide (IAPP). IAPP is expressed as a 67-residue pro-peptide called ProIAPP which is processed to IAPP following stimulation. While the molecular events underlying IAPP amyloid formation in vitro have been studied, little is known about the role of ProIAPP in the formation of pancreatic amyloid. This has been due in part to the limited availability of purified ProIAPP for conformational and biochemical studies. RESULTS: We present a method for efficient recombinant expression and purification of ProIAPP and a processing site mutant, mutProIAPP, as thioredoxin (Trx) fusion proteins. Conformation and amyloidogenicity of cleaved ProIAPP and mutProIAPP and the fusion proteins were assessed by circular dichroism, electron microscopy and Congo red staining. We find that ProIAPP and mutProIAPP exhibit strong self-association potentials and are capable of forming amyloid. However, the conformational transitions of ProIAPP and mutProIAPP during aging and amyloidogenesis are distinct from the random coil-to-beta-sheet transition of IAPP. Both proteins are found to be less amyloidogenic than IAPP and besides fibrils a number of non-fibrillar but ordered aggregates form during aging of ProIAPP. ProIAPP aggregates are cytotoxic on pancreatic cells but less cytotoxic than IAPP while mutProIAPP aggregates essentially lack cytotoxicity. The Trx fusion proteins are neither amyloidogenic nor cytotoxic. CONCLUSIONS: Our studies suggest that ProIAPP has typical properties of an amyloidogenic polypeptide but also indicate that the pro-region suppresses the amyloidogenic and cytotoxic potentials of IAPP.  相似文献   

3.
The relative reactivities of various naphthoquinone isomers (1,4-, 1,2- and 2-methyl-1,4-naphthoquinone) to two test proteins, apomyoglobin and human hemoglobin, were evaluated via liquid chromatography/electrospray ionization mass spectrometry (LC/ESI-MS). The structural characterization of the resulting adducts was also obtained by LC/ESI-MS analysis of the intact proteins. The reactive sites of apomyoglobin and human hemoglobin with 1,4-naphthoquinone and 1,2-naphthoquinone were also identified through characterization of adducted tryptic peptides by use of high-pressure liquid chromatography/electrospray ionization with tandem mass spectrometry (HPLC/ESI-MS/MS), TurboSEQUEST, and the scoring algorithm for spectral analysis (SALSA). Four adducted peptides, which were formed by nucleophilic addition of a lysine amino acid residue to 1,4-naphthoquinone, were also identified, as was an adducted peptide from incubation of 1,2-naphthoquinone with apomyoglobin. In the case of incubation of human hemoglobin with the two naphthoquinones, two adducted peptides were identified from the N-terminal valine modification of the alpha and beta chains of human hemoglobin. The adducted protein formation may imply that naphthalene produces its in vivo toxicity through 1,2- and 1,4-naphthoquinone metabolites reacting with biomolecular proteins.  相似文献   

4.
A number of proteins are capable of converting from their soluble, monomeric form into highly-ordered, insoluble aggregates known as amyloid fibrils. In vivo, these fibrils, which accumulate in organs and tissues, are associated with a wide range of amyloid diseases for which there are currently no therapeutic solutions. The molecular details of the pathway from native monomer through oligomeric intermediates to the final amyloid fibril remain a challenging enigma. Over the past few years, mass spectrometry has been applied to investigate the various stages of amyloid fibril formation, and this report summarizes the key steps achieved to date.  相似文献   

5.
The iron complex of oxypyriporphyrin, a porphyrinoid containing a keto-substituted pyridine, was coupled with apomyoglobin. The reconstituted ferric myoglobin was found to be five-coordinate without iron-bound water molecules. The anionic ligands such as CN (-) and N 3 (-) bound the myoglobin with high affinities, while neutral imidazole did not. The IR observation indicated that the azide complex was pure high-spin, although the corresponding native protein was in the spin-state equilibrium. The reduced myoglobin was five-coordinate but exhibited no measurable affinity for O 2. The affinity for CO was lowered down to 1/2400 as compared with native myoglobin. These anomalies were ascribed to the deformation in the iron coordination core after the replacement of one of the four pyrroles with a larger pyridine ring. The ligand binding analyses for the ferric and ferrous myoglobin suggest that the proximal histidine pulls the iron atom from the deformed core to reduce the interaction between the iron and exogenous ligands. Similarity of the reconstituted myoglobin with guanylate cyclase, a NO-responsive signaling hemoprotein, was pointed out.  相似文献   

6.
The incorporation of an artificially created metal complex into an apomyoglobin is one of the attractive methods in a series of hemoprotein modifications. Single crystals of sperm whale myoglobin reconstituted with 13,16-dicarboxyethyl-2,7-diethyl-3,6,12,17-tetramethylporphycenatoiron(III) were obtained in the imidazole buffer, and the 3D structure with a 2.25-A resolution indicates that the iron porphycene, a structural isomer of hemin, is located in the normal position of the heme pocket. Furthermore, it was found that the reconstituted myoglobin catalyzed the H2O2-dependent oxidations of substrates such as guaiacol, thioanisole, and styrene. At pH 7.0 and 20 degrees C, the initial rate of the guaiacol oxidation is 11-fold faster than that observed for the native myoglobin. Moreover, the stopped-flow analysis of the reaction of the reconstituted protein with H2O2 suggested the formation of two reaction intermediates, compounds II- and III-like species, in the absence of a substrate. It is a rare example that compound III is formed via compound II in myoglobin chemistry. The enhancement of the peroxidase activity and the formation of the stable compound III in myoglobin with iron porphycene mainly arise from the strong coordination of the Fe-His93 bond.  相似文献   

7.
Multiply-charged myoglobin ions retaining the prosthetic heme group have been formed by electrospray, injected into a quadrupole ion trap, and stored for up to one second prior to mass analysis. Collisional activation experiments indicate that these ions readily fragment into the charged heme group and the complementary apomyoglobin ion. No fragmentation is observed, however, upon ion storage in the presence of a neutral bath gas at 1 × 10?3 torr for up to one second. The significance of this observation is that these non-covalently-bound ions, in which both the heme group and the polypeptide carry charge, are kinetically stable for over one second at room temperature and, perhaps, at higher temperatures. This suggests that other biologically relevant ions derived using electrospray and bound by non-covalent interactions can be studied using the various tools available with ion storage mass spectrometers and by other techniques that employ relatively high pressure environments for the study of gaseous ions.  相似文献   

8.
The beta-amyloid (Abeta) deposition, which is the conversion of soluble Abeta peptides to insoluble plaques on a surface, is an essential pathological process in Alzheimer's disease (AD). The identification and characterization of possible environmental factors that may influence amyloid deposition in vivo are important to unveil the underlying etiology of AD. According to the amyloid cascade hypothesis, diffuse plaques are initial and visual deposits in the early event of AD, leading to amyloid plaques. To study amyloid deposition and growth in vitro, we prepared a synthetic template by immobilizing Abeta seeds on an N-hydroxysuccinimide ester-activated solid surface. According to our analysis with an ex situ atomic force microscope, the formation of amyloid plaque-like aggregates was mediated by the interaction between Abeta in a solution and on a synthetic template, suggesting that Abeta oligomers function well as seeds for amyloid deposition. It was observed that insoluble amyloid aggregates formed on the template surface serve as a sink of soluble Abeta in a solution as well as mediate the formation of intermediates in the pathway of amyloid fibrillization in a solution. Relative seeding efficiencies of fresh monomers, oligomers, and fully grown fibrils were analyzed by measuring the deposited plaque volume and its height distribution through atomic force microscopy. The result revealed that oligomeric forms of Abeta act more efficiently as seeds than monomers or fibrils do. Fluorescence spectroscopy with thioflavin T confirmed that amyloid aggregate formation proceeds in a concentration-dependent manner. Analysis with Fourier transform infrared spectroscopy indicated a progressive transition of soluble Abeta42 monomer to amyloid fibrils having antiparallel beta-sheet structure on the template. Furthermore, studies on the interaction between Abeta40 and 42, two major variants of Abeta derived from the amyloid precursor protein, showed that amyloid aggregate formation on the surface was accelerated further by the homogeneous association of soluble Abeta42 onto Abeta42 seeds than by other combinations. A slightly acidic condition was found to be unfavorable for amyloid formation. This study gives insight into understanding the effects of environmental factors on amyloid formation via the use of a synthetic template system.  相似文献   

9.
The 17-residue N-terminus (htt(NT)) directly flanking the polyQ sequence in huntingtin (htt) N-terminal fragments plays a crucial role in initiating and accelerating the aggregation process that is associated with Huntington's disease pathogenesis. Here we report on magic-angle-spinning solid-state NMR studies of the amyloid-like aggregates of an htt N-terminal fragment. We find that the polyQ portion of this peptide exists in a rigid, dehydrated amyloid core that is structurally similar to simpler polyQ fibrils and may contain antiparallel β-sheets. In contrast, the htt(NT) sequence in the aggregates is composed in part of a well-defined helix, which likely also exists in early oligomeric aggregates. Further NMR experiments demonstrate that the N-terminal helical segment displays increased dynamics and water exposure. Given its specific contribution to the initiation, rate, and mechanism of fibril formation, the helical nature of htt(NT) and its apparent lack of effect on the polyQ fibril core structure seem surprising. The results provide new details about these disease-associated aggregates and also provide a clear example of an amino acid sequence that greatly enhances the rate of amyloid formation while itself not taking part in the amyloid structure. There is an interesting mechanistic analogy to recent reports pointing out the early-stage contributions of transient intermolecular helix-helix interactions in the aggregation behavior of various other amyloid fibrils.  相似文献   

10.
The physiological form of the prion protein is normally expressed in mammalian cell and is highly conserved among species, although its role in cellular function remains elusive. Available evidence suggests that this protein is essential for neuronal integrity in the brain, possibly with a role in copper metabolism and cellular response to oxidative stress. In prion diseases, the benign cellular form of the protein is converted into an insoluble, protease-resistant abnormal scrapie form. This conversion parallels a conformational change of the polypeptide from a predominantly alpha-helical to a highly beta-sheet secondary structure. The scrapie form accumulates in the central nervous system of affected individuals, and its protease-resistant core aggregates into amyloid fibrils outside the cell. The pathogenesis and molecular basis of the nerve cell loss that accompanies this process are not understood. Limited structural information is available on aggregate formation by this protein as the possible cause of these diseases and on its toxicity. A large amount of structure-activity studies is based on the prion fragment approach, but the resulting information is often difficult to untangle. This overview focuses on the most relevant structural and functional aspects of the prion-induced conformational disease linked to peptides derived from the unstructured N-terminal and globular C-terminal domains.  相似文献   

11.
NMR signals arising from His EF5 and His GH1 NϵH protons of sperm whale myoglobin and apomyoglobin have been assigned, and the protein folding has been studied through the analysis of these signals. His EF5 and His GH1 NϵH protons participate in the internal hydrogen bonds at the B–GH and EF–H interfaces, respectively, and their signals are remarkably sensitive to local structural alterations at these sites. The shifts of these signals in alkaline pH condition were only slightly affected by the removal of heme, indicating that the overall protein folding is essentially retained in apoprotein. The line width of His EF5 proton signal, however, increased largely in the spectra of apomyoglobin and this result suggests a conformational lability of the EF–H interface in the absence of heme. Furthermore, the His EF5 proton signal was found to be influenced by not only the orientation of heme relative to the protein, but also by the type of hemin used to reconstitute apomyoglobin. These results clearly demonstrate the presence of a long-range structural correlation between the heme active site and the EF–H interface.  相似文献   

12.
Myoglobins from horse heart muscle, horse skeletal muscle and sperm whale are widely used as calibration standards or test compounds for various mass spectrometric methodologies. In all such cases reported in the literature, a molecular weight value is used (16,950.5 and 17,199, respectively) which is based on the assumption that amino acid 122 in this 153 amino-acid-long protein is asparagine, overlooking a published suggestion that it is aspartic acid instead. Since the mass assignment accuracy for matrix-assisted laser desorption mass spectrometry is reported to be +/- 0.01% and for electrospray ionization +/- 0.0025%, and error of one mass unit in approximately 17,000 would be significant. The mass-to-charge ratio of ions of the tryptic peptide encompassing amino acid 122 derived from commercially available horse heart and horse skeletal myoglobins, the apomyoglobin of the latter, and the tryptic and chymotryptic peptide of sperm whale myoglobin proved that in both proteins amino acid 122 is indeed aspartic acid, rather than asparagine. This finding was further confirmed by the collision-induced dissociation spectra of the [M + H]+ ions of the tryptic peptides from the horse myoglobins and the chymotriptic peptide from sperm whale myoglobin. Thus, the correct molecular weight of horse myoglobin is 16,951.49 and that of the sperm whale protein is 17,199.91.  相似文献   

13.
Human islet amyloid polypeptide (hIAPP) forms cytotoxic fibrils in type-2 diabetes and insulin is known to inhibit formation of these aggregates. In this study, a series of insulin-based inhibitors were synthesized and assessed for their ability to slow aggregation and impact hIAPP-induced membrane damage. Computational studies were employed to examine the underlying mechanism of inhibition. Overall, all compounds were able to slow aggregation at sufficiently high concentrations (10× molar excess); however, only two peptides showed any inhibitory capability at the 1:1 molar ratio (EALYLV and VEALYLV). The results of density functional calculations suggest this is due to the strength of a salt bridge formed with the Arg11 side chain of hIAPP and the inhibitors' ability to span from the Arg11 to past the Phe15 residue of hIAPP, blocking one of the principal amyloidogenic regions of the molecule. Unexpectedly, slowing fibrillogenesis actually increased damage to lipid membranes, suggesting that the aggregation process itself, rather than the fibrilized peptide, may be the cause of cytotoxicity in vivo.  相似文献   

14.
The iron complex of a new type of corrphycene bearing two ethoxycarbonyl (-CO2C2H5) groups on the bipyrrole moiety was introduced into apomyoglobin. The reconstituted ferric myoglobin has a coordinating water molecule that deprotonates to hydroxide with a pK(a) value of 7.3 and exhibits 3-10-fold higher affinities for anionic ligands when compared with a counterpart myoglobin with the same substituents on the dipyrroethene moiety. In the ferrous state, the oxygen affinity of the new myoglobin was decreased to 1/410 of the native protein. The anomalies in the ligand binding, notably dependent on the side-chain location, were interpreted in terms of a characteristic core shape of corrphycene that produces the longer and shorter Fe-N(pyrrole) bonds. The spin-state equilibrium analysis of the ferric azide myoglobin containing the new iron corrphycene supported the nonequivalence of the Fe-N(pyrrole) bonds. These results demonstrate that the trapezoidal molecular shape of corrphycene exerts functional significance when the iron complex is placed in a protein pocket.  相似文献   

15.
Pulsed-field gradient 1H NMR is employed to investigate the self-diffusion of amyloid Aβ-peptide in an aqueous buffer solution (pH 7.44) with a protein concentration of 50 μmol at 20°C. The self-diffusion coefficient of the peptide in a freshly prepared solution corresponds to its monomeric form. The storage of the solution at 24°C causes part of the peptide molecules to form amyloid aggregates as soon as over 48 h. However, the 1H NMR echo signal typical of aggregated molecules is not observed because of their dense packing in the aggregates and a large mass of the latter. A freezing-fusion of the solution after the aggregation does not cause changes in the self-diffusion coefficients of the peptide. After a peptide solution free of amyloid aggregates is subjected to a freezing-fusion cycle, part of the peptide molecules also remains in the monomeric form in the solution, while another part forms amyloid aggregates, with a portion of the aggregated peptide molecules retaining a high rotational mobility with virtually absolute absence of a translational mobility. The results obtained are interpreted in terms of the formation of “porous aggregates” of amyloid fibrils, with “pores” having sizes comparable with those of peptide molecules, though, being larger than water molecules. Peptide molecules, which do not form fibrils, are captured in the pores. Temperature regime is shown to be of importance for the aggregation of amyloid peptides. In particular, freezing, which is traditionally considered to be a method for the prevention from or temporary interruption of aggregation, may itself lead to the formation of amorphous amyloid aggregates, which remain preserved in solutions after their unfreezing.  相似文献   

16.
The in vivo formation of beta-pleated protein aggregates underlies a number of fatal neurodegenerative disorders, such as Alzheimer disease. Since molecular mechanisms of protein misfolding and aggregation remain poorly understood, this has been calling for many diverse biophysical tools capable of addressing different dynamic and conformational aspects of the phenomenon. The two model polypeptides used in this study are poly(l-tyrosine) and insulin. According to FT-IR spectra, poly(l-tyrosine) produced two distinct types of films with dominant either disordered or antiparallel beta-sheet conformations depending on carrier solvent used for film's deposition. Electrochemical analysis of both the types of polypeptide films by the means of cyclic voltammetry and differential pulse voltammetry proved that different electrochemical behaviour of the tyrosine residues is determined by the conformation of polypeptide chains. We have rationalized this difference in terms of varying electrochemical accessibility of Tyr residues in each structure. We have also carried out spectral and electrochemical characterization of insulin beta-sheet-rich amyloid fibrils. It appears that the detectable electrochemical response of the protein stems from the presence of four tyrosine residues per insulin monomer. Since hydrophobic residues, among them tyrosines play an important role in the formation of protein amyloid fibrils, but, on a molecular level, may be also critical in explaining neurotoxic properties of aggregates, their electrochemical properties may become a very valuable complementary tool in biophysical studies on protein misfolding.  相似文献   

17.
Extracellular deposition of amyloid‐beta (Aβ) protein, a fragment of membrane glycoprotein called β‐amyloid precursor transmembrane protein (βAPP), is the major characteristic for the Alzheimer's disease (AD). However, the structural and mechanistic information of forming Aβ protein aggregates in a lag phase in cell exterior has been still limited. Here, we have performed multiple all‐atom molecular dynamics simulations for physiological 42‐residue amyloid‐beta protein (Aβ42) in explicit water to characterize most plausible aggregation‐prone structure (APS) for the monomer and the very early conformational transitions for Aβ42 protein misfolding process in a lag phase. Monitoring the early sequential conformational transitions of Aβ42 misfolding in water, the APS for Aβ42 monomer is characterized by the observed correlation between the nonlocal backbone H‐bond formation and the hydrophobic side‐chain exposure. Characteristics on the nature of the APS of Aβ42 allow us to provide new insight into the higher aggregation propensity of Aβ42 over Aβ40, which is in agreement with the experiments. On the basis of the structural features of APS, we propose a plausible aggregation mechanism from APS of Aβ42 to form fibril. The structural and mechanistic observations based on these simulations agree with the recent NMR experiments and provide the driving force and structural origin for the Aβ42 aggregation process to cause AD. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2011  相似文献   

18.
We report on biohybrid surfactants, termed "giant amphiphiles", in which a protein or an enzyme acts as the polar head group and a synthetic polymer as the apolar tail. It is demonstrated that the modification of horseradish peroxidase (HRP) and myoglobin (Mb) with an apolar polymer chain through the cofactor reconstitution method yields giant amphiphiles that form spherical aggregates (vesicles) in aqueous solution. Both HRP and Mb retain their original functionality when modified with a single polystyrene chain, but reconstitution has an effect on their activities. In the case of HRP the enzymatic activity decreases and for Mb the stability of the dioxygen myoglobin (oxy-Mb) complex is reduced, which is probably the result of a disturbed binding of the heme in the apo-protein or a reduced access of the substrate to the active site of the enzyme or protein.  相似文献   

19.
20.
The iron(III) complex of 2,7,12,17-tetraethyl-3,6,11,18-tetra-methylcorrphycene, an isomeric heme, was complexed with apomyoglobin to examine the ligand binding ability of the novel macrocycle under physiological conditions. The reconstituted holoprotein was found to be functionally active at pH 7.4 and 20 degrees C and to bind oxygen and carbon monoxide reversibly with a half-saturation pressure at 6.7 and 3.5mmHg, respectively. Equilibrium affinities for these ligands are one to two orders of magnitude lower than those reported for native myoglobin. The functional anomaly was ascribed to the geometric and electronic strain on the iron(II) atom in the trapezoidal coordination core of corrphycene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号