首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zusammenfassung Die neutralen Halogenide und Pseudohalogenide von Kobalt(II) sind in Nitromethan kaum dissoziiert. Bei Zusatz entsprechender Anionen zu Kobalt(II)-perchloratlösungen werden in Nitromethan folgende Koordinationsformen leicht gebildet: CoCl2, CoCl3 , CoCl4 2–, CoBr2, CoBr3 , CoBr4 2–, CoJ2, CoJ3 , CoJ4 2–, Co[N3]2, [Co(N3)4]2–, Co[NCS]2, [Co(NCS)4]2–, Co[CN]2 [Co(CN)4]2– und [Co(CN)5]3–.
The neutral halides and pseudohalides of cobalt(II) are nearly undissociated in nitromethane. On addition of the appropriate anion to a solution of cobalt(II)-perchlorate in nitromethane the following coordination forms are easily produced: CoCl2, CoCl3 , CoCl4 2–, CoBr2, CoBr3 , CoBr4 2–, CoJ2, CoJ3 , CoJ4 2–, Co[N3]2, [Co(N3)4]2–, Co[NCS]2, [Co(NCS)4]2–, Co[CN]2, [Co(CN)4]2– and [Co(CN)5]3–.


Mit 10 Abbildungen  相似文献   

2.
Complexation of cobalt(II) and nickel(II) with thiocyanate ions has been studied by precise spectrophotometry in aqueous and micellar solutions of a nonionic surfactant Triton X-100 of varying concentrations (20–100 mmol-dm–3). With regard to cobalt(II), the formation of [Co(NCS)]+, [Co(NCS)2], and [Co(NCS)4]2– was established. The formation constant of [Co(NCS)4]2–, is increased with increasing concentration of the surfactant, suggesting that the [Co(NCS)4]2– complex is formed in micelles. In contrast, the formation constants of [Co(NCS)]+ and [Co(NCS)2] are remained practically unchanged. On the other hand, with nickel(II), the formation of sole [Ni(NCS)]+ and [Ni(NCS)2] was established in both aqueous and micellar solutions examined, their formation constants being also remained unchanged. Interestingly, no higher complex was confirmed in the nickel(II) system, unlike cobalt(II). The unusual affinity of the [Co(NCS)4]2– complex with micelles will be discussed from thermodynamic and structural points of view.  相似文献   

3.
《Polyhedron》1999,18(21):2749-2757
The pseudotetrahedral cobalt(II) zwitterionic complexes, [CoCl3(H2Meppz)] (1) [H2Meppz+=1-methylpiperazin-1-ium cation] and [CoCl3(HMe2ppz)] (2), [HMe2ppz+=1,4-dimethylpiperazin-1-ium cation] have been synthesized and characterized in the solid state by X-ray single crystal analysis, IR spectra, magnetic measurements and electronic spectra. In both the compounds the cobalt(II) center is coordinated in a distorted tetrahedral fashion by the three chloride ions and by one nitrogen of the piperazine ring that retains the more stable chair conformation. The distorted coordination polyhedron in complex 1 preserves the C3v symmetry while in complex 2 it retains only the m symmetry. In complex 1, the (H2Meppz)+ cation binds the Co(II) ion in the equatorial position of the piperazine ring using the unmethylated N1–H nitrogen atom that is less hindered than the methylated one. Complex 2, on the contrary, is a novelty being the first example of a Co(II) ion bound in the axial position of a piperazine ring, this produces a long Co(II)–N bond, 2.108(4) Å. Electronic spectra in the solid state are in perfect accordance with the X-ray crystallographic results indicating a C3v symmetry for complex 1 and a Cs(m) symmetry for complex 2. These complexes present strong two-center and three-center hydrogen bonds of N+–H⋯Cl type.  相似文献   

4.
The molecular structures of blue dichloro‐tetrakis(acrylamide) cobalt(II), [Co{O‐OC(NH2)CH=CH2}4Cl2] ( 1 ) and pink hexakis(acrylamide)cobalt(II) tetrachlorocobaltate(II), [Co{O‐OC‐(NH2)CH=CH2}6][CoCl4] ( 2 ), characterized by single X‐ray diffraction, IR spectroscopy and elemental analyses, are described. The coordination of CoII in 1 involves a tetragonally distorted octahedral structure with four O‐donor atoms of acrylamide in the equatorial positions and two chloride ions in the apical positions. The second complex 2 in ionic form contains CoII cations surrounded by an octahedral array of O‐coordinated acrylamide ligands, accompanied by a [CoCl4]2? anion.  相似文献   

5.
Summary The preparation and characterization of a series of new coordination compounds of cobalt(II), nickel(II) and palladium(II) containing 2-picolyl- or 2-lutidyl-methyl ketone (HPMK or HLMK) and various anions, Cl, Br, NO 3 , NCS or BF 4 , are reported. Complexes of square planar, tetrahedral and octahedral stereochemistry as well as five-coordinate species were isolated. The reaction products were found to be dependent on the molar ratios, pH and the temperature at which the reaction takes place. Cobalt(II) thiocyanate was found to form a complex of the type [CoL3][Co(NCS)4] (L = HPMK or HLMK). Also complexes containing coordinated BF4 were isolated. The ligand field parameters (Dq, B and ) for the cobalt(II) and nickel(II) complexes were calculated using the averaged-ligand-field approximation. The influence of the substituents of theses parameters and on the stereochemistry are discussed.  相似文献   

6.
(Corrin)cobalt(III) is reduced by indium(I) to its Co(II) counterpart (cob(II)alamin, B12r) at pH 1-2 in aqueous chloride. In these solutions the aqua oxidant (B12a) is in mobile anation equilibrium with its chloro derivative. At [Cl] 0.03 M, consumption of Co(III) is exponential and proceeds by parallel paths involving the aqua- and chloro-substituted oxidants. At [Cl] 0.10 M, rates are governed mainly by an preliminary act requiring In(I) and 2 Cl, but no Co(III). This initiation step generates a more reactive In(I) species which is taken to result from a slow heterolysis and loss of ligating water from InCl2 (aq).  相似文献   

7.
The absorption spectra of Co(II) chloride complexes, containing variable concentrations of chloride ligand, in a molten mixture of 80 mol% acetamide–20 mol% calcium nitrate tetrahydrate, were studied at 313, 333, 353, and 363 K, in the wavelength range 400-800 nm. The melt contains three possible ligands (CH3CONH2, H2O, and NO3 -) for competition with added chloride ligand. Addition of chloride caused a shift of the absorption maximum of octahedral cobalt(II) nitrate towards lower energies and pronounced changes in the shape of the initial spectrum of cobalt(II) nitrate. The effect of temperature changes on the molar absorption coefficient of the Co(II) species was dependent on the chloride concentration and was attributed to the structural changes occurring in the cobalt(II) species. The STAR and STAR FA programs were applied to identify the complex ionic species and to calculate the stability constants of Co(II) complexes formed in this solvent. The results indicate the highest probability of formation of the following complex species: Co(NO3)4 2-, Co(NO3)2Cl2 2-, and CoCl4 2-. Stability constants of each complex were presented for the equilibria occurring at 313, 333, 353, and 363 K. Distribution of the Co(II) species was also calculated over the ranges of chloride concentration and temperature investigated.  相似文献   

8.
Three new cobalt(II) binuclear complexes have been prepared and characterized, namely [Co2(TCPHTA)(L)4](ClO4)2 [L=1,10-phenanthroline (phen), 5-nitro-1,10-phenanthroline(NO2-phen) and 2, 2-bipyridyl (bipy), respectively], where TCPHTA is the tetrachlorophthalate dianion. Based on i.r. spectra, elemental analyses and conductivity measurements, tetrachlorophthalato-bridged structures consisting of two cobalt(II) ions in which each cobalt(II) ion has a distorted octahedral environment are proposed for these complexes. The temperature dependence of the magnetic susceptibility for [Co2(TCPHTA)(L)4](ClO4)2·nH2O (L=phen, NO2-phen and bipy) has been measured over the 77–300 K range and the observed data successfully simulated by an equation based on the spin Hamiltonian operator (H=–2JS1S2), giving the exchange integral J=–2.92, –3.45, –4.03 cm–1, respectively. This result indicates the presence of a weak antiferromagnetic spin exchange interaction between the metal ions.  相似文献   

9.
The redox reaction between cobalt(II) and gold(III) chloride in the presence of 1.10-phenanthroline or 2,2'-bipyridine was studied, and a titration of the cobalt(II) complex with a gold(III) chloride solution was developed. A 4-fold amount of 1,10-phenanthroline or 2,2'-bipyridine was necessary for rapid quantitative reaction; the permissible pH range was 1.5–5. The oxidation of the cobalt(II) complex proceeds rapidly at 40–50°C, and a direct potentiometric titration was possible. The following maximum errors were obtained: 3.3% for 0.2–1.0 mg Co, 2.0% for 1–5 mg Co, and 0.70% for 10–40 mg Co. The following ions did not interfere: Ni(II), Zn(II), Pb(II), Cd(II), Mn(II), Fe(II), Cr(III), Al(III), Th(IV), Se(IV), Ti(IV), U(VI), Mo(VI), SO2-4 and PO3-4. Even small quantities of silver(I), copper(II), palladium(II), mercury(II)and iron(III) interfered. The method was applied to the determination of high cobalt contents in high-temperature nickel-base alloys.  相似文献   

10.
《Fluid Phase Equilibria》1996,118(1):143-151
The absorption spectra of Co(II) chloride species were studied in molten acetamide containing variable concentration of chloride ligand, in the wavelength range 400–800 nm, at 90°C. The stepwise formation of CoClj(2-j) complexes (J = 1–4) was observed. Addition of chloride ligand (up to 4 molar) dramatically changed Co(II) absorption spectra due to change in co-ordination from octahedral through a severely distorted octahedral to tetrahedral co-ordination. Overall equilibrium constants βj and consecutive stability constants Kj(j = 1–4) were calculated using SPELMA program for simultaneous computation of equilibrium constants and molar absorption coefficients for each complex species. Distribution of the Co(II) species was also calculated in the studied ligand concentration range.  相似文献   

11.
The hydro­thermal reaction of cobalt(II) chloride with trimesate (3,5‐di­carboxy­benzoate) ions in aqueous solution gives the novel title complex, [Co(C9H5O6)2(H2O)4]. The CoII ion lies on an inversion centre and is octahedrally coordinated to two trimesate anions and four water mol­ecules. Hydro­gen bonds ensure the three‐dimensional architecture of the structure.  相似文献   

12.
Extraction radiochemical investigations of ternary ion-association thiocyanate complexes of Co(II) with nitroblue tetrazolium chloride (NBT) [(3,3-dianizol-4,4-bis) 2-(4-nitrophenyl)-5-phenylnitrotetrazolium chloride] and triphenyltetrazolium chloride (TTC) [2,3,5-triphenyltetrazolium chloride] have been carried out. Molar ratios of the reacting components have been determined as NBT/[Co (SCN)4]2–=11 and TTC/[Co(SCN)4]2–=21. Using a chemical model and the method of Likussar — Boltz we have determined the values , Kex and KD, characterizing the extraction process. The results have been statistically treated. The relative standard deviation Sr has been calculated at a confidence level of 95%.  相似文献   

13.
The complexation of zinc(II) with chloride, bromide and iodide ions has been studied by calorimetry in hexamethylphosphoric triamide (HMPA) containing 0.1 mol-dm–3 (n-C4H9)4NClO4 as a constant ionic medium at 25°C. The formation of [ZnXn](2–n)+ (n=1,2,3,4 for X=Cl; n=1,2 for X=Br, I) is revealed, and their formation constants, enthalpies and entropies were determined. It is proposed that the zinc(II) ion is fourcoordinated in HMPA and the coordinating HMPA molecules are stepwise replaced with halide ions to form [ZnXn(hmpa)4–n](2–n)+ (n=1–4), as is the case for the cobalt(II) ion. Furthermore, the formation of [ZnClI], [ZnBrI], [ZnBrCl] and [ZnBrCl2] is revealed in the relevant ternary systems. It is found that the affinity of a given halide ion X to [ZnCl]+, [ZnBr]+ and [Znl]+ is practically the same.  相似文献   

14.
The complexation of manganese(II), cobalt(II) and nikel(II) with bromide ions has been studied in N,N-dimethylacetamide(DMA) by calorimetry and spectrophotometry. The formation of [MBr]+, [MBr2] and [MBr3] (M=Mn, Co, Ni) was revealed in all the metal systems. Interestingly, the complexation is significantly enhanced in DMA over N,N-dimethylformamide (DMF). This is unusual because physicochemical properties of DMA and DMF as solvent are similar. Furthermore, extracted electronic spectra of individual complexes of NiII suggested the presence of a geometry equilibrium, [NiBr(DMA)5]+=[NiBr(DMA)4]++ DMA, in DMA. A similar geometry equilibrium is also suggested, [NiBr2(DMA)3]=[NiBr2(DMA)2]+DMA. Such geometry equilibria were not observed in DMF. With regard to cobalt(II), electronic spectra show the presence of the four-coordinated [CoBr(DMA)3]+ complex in DMA, unlike the six-coordinated [CoBr(DMF)5]+ one in DMF. These facts suggest that a specific strong steric interaction operates between coordinating solvent molecules, which plays a key role in the complexation behavior of the divalent transition metal ions in DMA.  相似文献   

15.
Effects of concentrations of ammonia (0.3–5.8 M) and supporting electrolytes (NaF, NaClO4; 0.1–0.5 M) on the kinetics of electroreduction of ammonia complexes of cobalt(II) at a dropping mercury electrode are studied. Most experiments are performed with low concentrations of cobalt(II) complexes (1 × 10–5 to 2 × 10–5 M) in the absence of a polarographic maximum. The dependence of the half-wave potential of the reversible cathodic wave pertaining to the reduction of ammonia complexes of cobalt(II) on the concentration of ammonia molecules is obtained. It is found from the dependence that, at ammonia concentrations of 0.5–2.6 M, the slow electrochemical stage involves predominantly complexes Co(NH3)2 2+. At higher ammonia concentrations, the stage involves complexes Co(NH3) k 2+ (k > 2), which form in preceding chemical stages from complexes Co(NH3) i 2+ (i = 3–6) that are predominant in solution. Values of the diffusion coefficients for complexes Co(NH3) i 2+, apparent transfer coefficients, and rate constant of the process of electroreduction of ammonia complexes of cobalt(II) are determined. The reasons for the complicating effect the insoluble products of reduction of cobalt(II) complexes have on the shape of polarographic waves are discussed.  相似文献   

16.
Two compounds containing a proton transfer ion pair (pipzH2)(btcH2), 1, and its Co(II) complex, were synthesized and characterized using IR spectroscopy and single crystal X-ray diffraction method. The chemical formula is {(pipzH2)[Co(btc)(H2O)4].4H2O}n for Co(II) complex, 2, (pipz:piperazine, btcH4:benzene-1,2,4,5-tetracarboxylic acid). The space group and crystal system of both compounds are $P\bar 1$ and triclinic. The proton transfer ion pair 1 was prepared by the reaction between piperazine and benzene-1,2,4,5-tetracarboxylic acid, and its Co(II) complex, 2, was synthesized by the reaction of 1 with cobalt(II) sulphate. The complex 2 is a polymeric substance with Co(II) atoms linked by two O atoms from one benzene-1,2,4,5- tetracarboxylate. In both crystal structures, a wide range of noncovalent interactions consisting of hydrogen bonding (types of OH ?O, N-H?O and C-H?O) and ion pairing interactions connecting the various components into a supramolecular structure. There are also C-H?O and C-H?π intermolecular interactions in compound 2 which take part in the stabilization of molecular packing. The protonation constants of pipz and btcH4, the equilibrium constants for the btcH4-pipz proton transfer system and the stoichiometry and stability of this system with Co2+ ion in aqueous solution were investigated by potentiometric pH titrations. The stoicheiometry of one of the most abundant complexed species in solution was found to be the same as that of the crystalline cobalt(II) complex.  相似文献   

17.
The 17O and 14N paramagnetic transverse relaxation time and chemical shift of proline as well as of water, in aqueous solutions of Co(II), Cu(II) and Mn(II) were measured as a function of pH, temperature, and metal ion concentration. The relaxation results were fitted to a theoretical equation linking the Swift-Connick equation to the stability constants of the major complexes in equilibrium. Stability constants for the major complexes of the three ions in this work were determined, along with thermodynamic parameters for some of the complexes. Two complexes of Co(II) were detected directly by 17O NMR at basic pH, and were assigned to CoPrO2 and CoPro3. The hyperfine coupling constant for these two complexes, A/h, was determined directly from the isotropic shift and was found to be −0.63 and −0.31 MHz, respectively. CoPrO2 could be detected in the pH range 6–12, for Co(II) concentrations greater than 0.04 M, and its chemical shift was around 700 ppm downfield from free proline, at 300 K. CoPro3 was detected only at pH 11, in the temperature range 275–284 K, with a chemical shift of 390 ppm downfield from free proline.  相似文献   

18.
An electrochemical procedure of anodic deposition of cobalt oxyhydroxide film on a glassy carbon substrate in an alkaline medium (i.e. pH 11.6) is described. The electrodeposited film was obtained either by voltage cycling or by potentiostatic conditions using non-deaerated 0.1 M Na2CO3 solutions containing 40 mM tartrate ions and 4 mM CoCl2. The effects on the film formation and growth, such as tartrate–cobalt ratio, pH, applied potential, etc. were widely evaluated. The electrodeposition process, under anodic conditions and moderately alkaline solutions, most likely involves a redox transition Co(II)→Co(III)/Co(IV) with destruction of the tartrate complex and formation of insoluble oxide/hydroxide cobalt species on the glassy carbon surface. The resulting cobalt oxyhydroxide films were characterised by cyclic voltammetry (CV) in 0.1 M NaOH solutions and by scanning electron microscopy (SEM) analysis after different strategies of preparation and various electrochemical treatments. The electrochemical activity of the deposited films was checked using various organic molecules as model compounds.  相似文献   

19.
2-Pyridylaldehydearoylhydrazones have been examined as reagents for precolumn derivatization of metal ions in the HPLC-spectrophotometry system. With the simplest analog, 2-pyridylaldehydebenzoylhydrazone (PAB), among 11 metal ions only Ni(II) ion gives the peak while the other metal chelates seem to be dissociated on an HPLC column where no added PAB is present in the eluent solutions. All other PAB analogs exhibit the peak for Ni(II) ion as well as Co(III) ion. In one reagent system, V(V) and Fe(II) chelates also appear in the chromatograms. It has been stressed that the selectivity principle is the kinetic differentiation (KD) towards metal chelates associated with the HPLC processes. The specificity for Ni(II) ion is in close relation to a key structure of the ligand molecules which provides an N,N,O coplanar coordination environment to form two five-membered chelate rings. An extremely selective and sensitive KD-HPLC method for the quantitation of Ni(II) ion at the ultra-trace levels was assessed; the detection limit (3 Blank) for Ni(II) ion was down to 5.34 × 10–9 mol l–1 (31.5 pg in a 100 l injection) and the excellent applicability was checked using coal fly ash samples.  相似文献   

20.
Summary Complexes of cobalt(II), cobalt(III) and rhodium(III) with TCEC and TAPC have been synthesised. TCEC with cobalt(II) gave [Co(TCEC)Br]Br and [Co(TCEC)Cl]Cl, five coordinate high spin square pyramid complexes, but the corresponding cobalt(III) complex could not be characterised. Rhodium(III) gave a six coordinate [Rh(TCEC)Cl2]Cl complex, in which the two coordinated chlorides have acis-geometry and the four pendant arms lie on one side of the N4 plane with none of the —CN groups coordinated TAPC on the other hand gives the cobalt(III) complex, [Co(TAPC)Br]Br2, in which one of the amino groups of the four pendant arms is coordinated to cobalt. Rhodium(III) with TAPC gave [Rh(TAPC)Cl]Cl2 in which one axial site is occupied by the amino group of one of the pendant arms and the other by Cl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号