首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We review possible properties of Higgs bosons in the NMSSM, which allow to discriminate this model from the MSSM: masses of mostly Standard-Model-like Higgs bosons at or above 140 GeV, or enhanced branching fractions into two photons, or Higgs-to-Higgs decays. In the case of a Standard-Model-like Higgs boson above 140 GeV, it is necessarily accompanied by a lighter state with a large gauge singlet component. Examples for such scenarios are presented. Available studies on Higgs-to-Higgs decays are discussed according to the various Higgs production modes, light Higgs masses and decay channels.  相似文献   

2.
The Minimal Supersymmetric Standard Model (MSSM) distinguishes itself from other GUT's by a successful prediction of many unrelated phenomena with a minimum number of parameters. Among them: a) Unification of the gauge couplings constants; b) Unification of the b-quark and τ-lepton masses; c) Proton stability; d) Electroweak symmetry breaking at a scale far below the unification scale and the corresponding relation between the gauge boson masses and the top quark mass. A combined fit of the free parameters in the MSSM to these low energy constraints shows that the MSSM model can satisfy these constraints simultaneously. From the fitted parameters the masses of the as yet unobserved superpartners of the SM particles are predicted, the top mass is constrained to a range between 140 and 200 GeV, and the second order QCD coupling constant is required to be between 0.108 and 0.132. The complete second order renormalization group equations for the gauge and Yukawa couplings are used and analytical solutions for the neutral gauge boson, the Higgs masses and the sparticle masses are derived, taking into account the one-loop corrections to the Higgs potential.  相似文献   

3.
The search for the Higgs boson was one of the most relevant issues of the final years of LEP running at high energies. An excess of 3σ beyond the background expectation has been found, consistent with the production of the Higgs boson with a mass near 115 GeV/c2. At the upgraded TeVatron and at LHC the search for the Higgs boson will continue. At TeVatron Higgs bosons can be detected with masses up to 180 GeV with an assumed total integrated luminosity of 20 fb—1. LHC has the potential to discover the Higgs boson in many different decay channels for Higgs masses up to 1 TeV. It will be possible to measure Higgs boson parameters, such as mass, width, and couplings to fermions and bosons. The results from Higgs searches at LEP2 and the possibilities for searches at hadron colliders will be reviewed.  相似文献   

4.
This paper describes a topological search for an invisibly decaying Higgs boson, H, produced via the Bjorken process (e+e-→HZ). The analysis is based on data recorded using the OPAL detector at LEP at centre-of-mass energies from 183 to 209 GeV corresponding to a total integrated luminosity of 629 pb-1. In the analysis only hadronic decays of the Z boson are considered. A scan over Higgs boson masses from 1 to 120 GeV and decay widths from 1 to 3000 GeV revealed no indication for a signal in the data. From a likelihood ratio of expected signal and standard model background we determine upper limits on cross-section times branching ratio to an invisible final state. For moderate Higgs boson decay widths, these range from about 0.07 pb (MH=60 GeV) to 0.57 pb (MH=114 GeV). For decay widths above 200 GeV the upper limits are of the order of 0.15 pb. The results can be interpreted in general scenarios predicting a large invisible decay width of the Higgs boson. As an example we interpret the results in the so-called stealthy Higgs scenario. The limits from this analysis exclude a large part of the parameter range of this scenario experimentally accessible at LEP 2.  相似文献   

5.
The data collected by the OPAL experiment at GeV were used to search for Higgs bosons which are predicted by the Standard Model and various extensions, such as general models with two Higgs field doublets and the Minimal Supersymmetric Standard Model (MSSM). The data correspond to an integrated luminosity of approximately 54 pb. None of the searches for neutral and charged Higgs bosons have revealed an excess of events beyond the expected background. This negative outcome, in combination with similar results from searches at lower energies, leads to new limits for the Higgs boson masses and other model parameters. In particular, the 95% confidence level lower limit for the mass of the Standard Model Higgs boson is 88.3 GeV. Charged Higgs bosons can be excluded for masses up to 59.5 GeV. In the MSSM, GeV and GeV are obtained for , no and maximal scalar top mixing and soft SUSY-breaking masses of 1 TeV. The range is excluded for minimal scalar top mixing and GeV. More general scans of the MSSM parameter space are also considered. Received: 27 October 1998 / Published online: 19 February 1999  相似文献   

6.
If the standard model (SM) Higgs particle is sufficiently heavy, then its contribution to should be largely imaginary, interfering with the also predominantly imaginary SM “background” generated by the W loop. For standard model Higgs masses in the region GeV, this interference is found to be constructive and increasing the Higgs signal. In the minimal SUSY case an interference effect should also appear for the contribution of the heavier CP-even neutral Higgs boson , provided it is sufficiently heavy. The effect is somewhat reduced, though, by the smallness of the width and the and ZZ branching ratios. The interference is again found to be constructive for part of the parameter space corresponding to sfermion masses at the TeV scale and maximal stop mixing. For both the SM and the SUSY case, regions of the parameter space exist, though, where the interference may be destructive. It is therefore essential to take these effects into account when searching for possible scalar Higgs-like candidates. To this aim, we present the complete analytic expressions for both resonance and background amplitudes. Received: 20 October 2000 / Revised version: 5 January 2001 / Published online: 23 February 2001  相似文献   

7.
We study an upper bound on masses of additional scalar bosons from the electroweak precision data and theoretical constraints such as perturbative unitarity and vacuum stability in the two-Higgs-doublet model taking account of recent Higgs boson search results. If the mass of the Standard-Model-like Higgs boson is rather heavy and is outside the allowed region by the electroweak precision data, such a discrepancy should be compensated by contributions from the additional scalar bosons. We show the upper bound on masses of the additional scalar bosons to be about 2 (1) TeV for the mass of the Standard-Model-like Higgs boson to be 240 (500) GeV.  相似文献   

8.
In the Next-to-Minimal Supersymmetric Standard Model, CP-even Higgs bosons can have masses in the range of 80–110 GeV in agreement with constraints from LEP due to their sizeable singlet component. Nevertheless their branching ratio into two photons can be more than 10 times larger than the one of a Standard Model Higgs boson of similar mass due to a reduced coupling to b quarks. This can lead to a spectacular enhancement of the Higgs signal rate in the di-photon channel at hadron colliders by a factor 6. Corresponding scenarios can occur in the Next-to-Minimal Supersymmetric Standard Model for a relatively low Susy breaking scale.  相似文献   

9.
We update our previous work on an analysis of the electroweak data by including new and partly preliminary data available up to the 1996 summer conferences. The new results on the partial decay widths into and hadrons now offer a consistent interpretation of all data in the minimal standard model. The value extracted for the strong interaction coupling constant agrees well with determinations in other areas. New constraints on the universal parameters , and are obtained from the updated measurements. No signal of new physics is found in the , , analysis once the SM contributions with GeV and those of not a too heavy Higgs boson are accounted for. The naive QCD-like technicolor model is now ruled out at the 99% CL even for the minimal model with . In the absence of a significant new physics effect in the electroweak observables, constraints on masses of the top quark, , and Higgs boson, , are derived as a function of and the QED effective coupling . The preferred range of depends rather strongly on the actual value of : for , while for at 95% CL. Prospects due to forthcoming improved measurements of asymmetries, the mass of the weak boson , and are discussed. Anticipating uncertainties of 0.00020 for , 20 MeV for , and 2 GeV for , the new physics contributions to the , , parameters will be constrained more severely, and, within the SM, the logarithm of the Higgs mass can be constrained to about . The better constraints on , , and on within the minimal SM should be accompanied with matching precision in . Received: 18 June 1997  相似文献   

10.
《Physical review letters》2011,107(12):121801
We report results from a search for neutral Higgs bosons produced in association with b quarks using data recorded by the D0 experiment at the Fermilab Tevatron Collider and corresponding to an integrated luminosity of 7.3 fb(-1). This production mode can be enhanced in several extensions of the standard model (SM) such as in its minimal supersymmetric extension (MSSM) at high tanβ. We search for Higgs bosons decaying to tau pairs with one tau decaying to a muon and neutrinos and the other to hadrons. The data are found to be consistent with SM expectations, and we set upper limits on the cross section times branching ratio in the Higgs boson mass range from 90 to 320 GeV/c(2). We interpret our result in the MSSM parameter space, excluding tanβ values down to 25 for Higgs boson masses below 170 GeV/c(2).  相似文献   

11.
The potential of a linear e + e- collider operated at a centre-of-mass energy of 350 GeV is studied for the measurement of the Higgs boson mass. An integrated luminosity of 500 fb-1 is assumed. For Higgs boson masses of 120, 150 and 180 GeV the uncertainty on the Higgs boson mass measurement is estimated to be 40, 65 and 70 MeV, respectively. The effects of beam related systematics, namely a bias in the beam energy measurement, the beam energy spread and the luminosity spectrum due to beamstrahlung, on the precision of the Higgs boson mass measurement are investigated. In order to keep the systematic uncertainty on the Higgs boson mass well below the level of the statistical error, the beam energy measurement must be controlled with a relative precision better than 10-4. Received: 30 May 2005, Revised: 6 July 2005, Published online: 6 October 2005  相似文献   

12.
We study Higgs boson production and decay in a certain class of little Higgs models with T-parity in which some T-parity partners of the Standard Model (SM) fermions gain their masses through Yukawa-type couplings. We find that the Higgs boson production cross section of a 120 GeV Higgs boson at the CERN LHC via gg fusion process at one-loop level could be reduced by about 45%, 35% and 20%, as compared to its SM prediction, for a relatively low new particle mass scale f=600, 700 and 1000 GeV, respectively. On the other hand, the weak boson fusion cross section is close to the SM value. Furthermore, the Higgs boson decay branching ratio into di-photon mode can be enhanced by about 35% in small Higgs mass region in certain case, for the total decay width of Higgs boson in the little Higgs model is always smaller than that in the SM.  相似文献   

13.
This report summarizes the final results from the OPAL collaboration on searches for neutral Higgs bosons predicted by the Minimal Supersymmetric Standard Model (MSSM). CP-conserving and, for the first time at LEP, CP-violating scenarios are studied. New scenarios are also included, which aim to set the stage for Higgs searches at future colliders. The results are based on the data collected with the OPAL detector at e + e- centre-of-mass energies up to 209 GeV. The data are consistent with the prediction of the Standard Model with no Higgs boson produced. Model-independent limits are derived for the cross-sections of a number of event topologies motivated by predictions of the MSSM. Limits on Higgs boson masses and other MSSM parameters are obtained for a number of representative MSSM benchmark scenarios. For example, in the CP-conserving scenario m h-max where the MSSM parameters are adjusted to predict the largest range of values for m h at each , and for a top quark mass of 174.3 GeV, the domain is excluded at the 95% confidence level and Higgs boson mass limits of m h > 84.5 GeV and m A > 85.0 GeV are obtained. For the CP-violating benchmark scenario CPX which, by construction, enhances the CP-violating effects in the Higgs sector, the domain is excluded but no universal limit can be set on the Higgs boson masses.Received: 6 April 2004, Revised: 8 June 2004, Published online: 12 August 2004  相似文献   

14.
The renormalization group (RG) analyses show that in the four-generation fermion condensate scheme of electroweak symmetry breaking without the extra fourth generation of leptons thelimitation to the compositeness scale Λ could be greatly loosened and up to Λ<1010 GeV if the masses of the extra fourth generation of quarks are demanded to be bigger than the topquark mass mt = 180 GeV. However, the mass constraints 2(mQ)minh0<2(mQ)max between the Higgs boson h0 and its constituent Q-fermions are no longer totally valid for Λ>105 GeV. The ~redicted masses of the fourth generation of quarks and the Higgs boson will be larger than the corresponding ones in the four-generation quark-lepton scheme. The stability of the results for variation of the compositeness boundary conditions could be explained more clearly.  相似文献   

15.
In the framework of T2HDM, we calculated the new physics contributions involving neutral Higgs bosons to the branching ratios of B_(s,d)~0→e~+e~-(e=e,μ) decays. Comparing the theoretical predictions with the experimental upper-limits, we found that (a) The data of Br(B_d~0→e~+e~-)give the upper bound on tanβ: tanβ≤ 22, while Br(B_s~0→e~+e~-)give tanβ≤12 for fixed δ = 0°, m_H+=350 GeV, m_Ho = 160 GeV, m_Ho= 115 GeV and m_Ao=120 GeV; (b) A light neutral Higgs boson mass m_Ho (m_Ao) less than 50 GeV (120 GeV) is excluded by the data of branching ratios for B_(s,d)~0→e~+e~-(e=μ) decays with tanβ=10; (c) The bounds on m_(h~0) and tanβ, or m_(A~0) and tanβ are strongly correlated: a smaller (larger) tanβ means a lighter (heavier) neutral Higgs boson.  相似文献   

16.
Finite Unified Theories (FUTs) are N = 1 supersymmetric Grand Unified Theories (GUTs) which can be made finite to all‐loop orders, based on the principle of reduction of couplings, and therefore are provided with a large predictive power. Confronting the predictions of SU(5) FUTs with the top and bottom quark masses and other low‐energy experimental constraints a light Higgs‐boson mass in the range Mh ∼ 121–126 GeV was predicted, in striking agreement with the recent discovery of a Higgs‐like state around ∼ 125.5 GeV at ATLAS and CMS. Furthermore the favoured model, a finiteness constrained version of the MSSM, naturally predicts a relatively heavy spectrum with coloured supersymmetric particles above ∼ 1.5 TeV, consistent with the non‐observation of those particles at the LHC. Restricting further the best FUT's parameter space according to the discovery of a Higgs‐like state and B‐physics observables we find predictions for the rest of the Higgs masses and the supersymmetric particle spectrum.  相似文献   

17.
A search for a narrow Higgs boson resonance in the diphoton mass spectrum is presented based on data corresponding to 7.0 fb{-1} of integrated luminosity from pp collisions at sqrt[s]=1.96 TeV collected by the CDF experiment. No evidence of such a resonance is observed, and upper limits are set on the cross section times branching ratio of the resonant state as a function of Higgs boson mass. The limits are interpreted in the context of the standard model and one fermiophobic benchmark model where the data exclude fermiophobic Higgs bosons with masses below 114 GeV/c{2} at a 95% Bayesian credibility level.  相似文献   

18.
A generalization of the Next-to-Minimal Supersymmetric Model (NMSSM) is studied in which an explicit μ-term as well as a small supersymmetric mass term for the singlet superfield are incorporated. We study the possibility of raising the Standard Model-like Higgs mass at tree level through its mixing with a light, mostly-singlet, CP-even scalar. We are able to generate Higgs boson masses up to 145 GeV with top squarks below 1.1 TeV and without the need to fine tune parameters in the scalar potential. This model yields light singlet-like scalars and pseudoscalars passing all collider constraints.  相似文献   

19.
We report on a search for the standard model Higgs boson decaying into pairs of τ leptons in pp collisions produced by the Tevatron at sqrt[s]=1.96 TeV. The analyzed data sample was recorded by the CDFII detector and corresponds to an integrated luminosity of 6.0 fb(-1). The search is performed in the final state with one τ decaying leptonically and the second one identified through its semihadronic decay. Since no significant excess is observed, a 95% credibility level upper limit on the production cross section times branching ratio to the ττ final state is set for hypothetical Higgs boson masses between 100 and 150 GeV/c2. For a Higgs boson of 120 GeV/c2 the observed (expected) limit is 14.6 (15.3) the predicted value.  相似文献   

20.
We present the results of a search for standard model Higgs boson production with decay to WW*, identified through the leptonic final states e+ e- nu nu,+/-mu -/+nu nu and mu+ mu- nu nu. This search uses 360 pb -1 of data collected from pp collisions at square root of s =1.96 TeV by the upgraded Collider Detector at Fermilab (CDF II). We observe no signal excess and set 95% confidence level upper limits on the production cross section times branching ratio for the Higgs boson to WW* or any new scalar particle with similar decay products. These upper limits range from 5.5 to 3.2 pb for Higgs boson masses between 120 and 200 GeV/c2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号