共查询到20条相似文献,搜索用时 15 毫秒
1.
Wasura Soonthorntantikul Natchanun Leepipatpiboon Tohru Ikegami Nobuo Tanaka Thumnoon Nhujak 《Journal of chromatography. A》2009,1216(31):5868-5874
Stationary phase selectivities for halogenated compounds in reversed-phase HPLC were compared using C18 monolithic silica capillary columns modified with poly(octadecyl methacrylate) (ODM) and octadecyl moieties (ODS). The preferential retention of halogenated benzenes on ODM was observed in methanol/water and acetonitrile/water mobile phases. In selectivity comparison of selected analytes on ODM and ODS, greater selectivities for halogenated compounds were obtained with respect to alkylbenzenes on an ODM column, while similar selectivities were observed with a homologous series of alkylbenzenes on ODM and ODS columns. These data can be explained by greater dispersive interactions by more densely packed octadecyl groups on the ODM polymer coated column together with the contribution of carbonyl groups in ODM side chains. For the positional isomeric separation of dihalogenated benzenes (ortho-, meta-, para-), the ODM column also provided better separation of these isomers for the adjacently eluted isomers that cannot be completely separated on an ODS column in the same mobile phase. These results imply that the ODM column can be used as a better alternative to the ODS column for the separation of other halogenated compounds. 相似文献
2.
A polydimethylsiloxane (PDMS)-modified monolithic silica column was prepared for performing reversed-phase capillary liquid chromatography. The prepared PDMS column has a permeability of 6.4×10(-14) m(2) with a plate height <9.2 μm. Alkylbenzenes and polycyclic aromatic hydrocarbons (PAHs) were well separated with the PDMS stationary phase, which exhibited similar selectivity and separation mechanism to that of octadecyl stationary phase. The hydrophobic interactions between the analytes and the PDMS stationary phase mainly play the roles for the separation of alkylbenzenes and PAHs. The characteristics of the PDMS column for the separation of alkylbenzenes and PAHs demonstrated that it would be a promising alternative to the octadecyl column. 相似文献
3.
A novel stationary phase triacontyl-functionalized monolithic silica capillary column was successfully prepared for reversed-phase capillary liquid chromatography. The performance of the monolithic silica capillary column coated with triacontyl chain for the separation of alkylbenzenes, xylene isomers, polycyclic aromatic hydrocarbons, and mixture of α- and β-carotenes was studied, which was compared to that using the monolithic silica capillary column coated with octadecyl chain. The comparison results showed that triacontyl-functionalized monolithic silica capillary column would be a promising media to be used for the separation of isomeric solutes with long chain in reversed-phase capillary liquid chromatography. 相似文献
4.
A. A. Korolev V. E. Shiryaeva T. P. Popova A. A. Kurganov 《Russian Journal of Physical Chemistry A, Focus on Chemistry》2006,80(4):609-614
The efficiency and dynamic characteristics of seven silica-gel-based monolithic capillary columns were analyzed by separating on them a mixture of five light hydrocarbons. For helium carrier gas flowing at an optimum velocity, the height equivalent to a theoretical plate was found to be 0.15–0.20 mm, values comparable to those typical of packed capillary columns. An analysis of the Van Deemter curves for the columns under study demonstrated that the main contribution to the smearing of the chromatographic zone comes from the diffusional processes in the mobile phase while the mass transfer between the mobile and stationary phases plays only a minor role. At the same time, the parameter A in the Van Deemter equation, which characterizes the degree of column packing uniformity, was found to be negative. This result contradicts the classical theory of chromatography and calls for further studies of monolithic capillary columns. 相似文献
5.
Preparation methods of monolithic silica columns for HPLC including the surface modification were reviewed. Chemical modification methods recently reported to obtain stationary phases for reversed-phase (RP), chiral, ion-exchange, and hydrophilic interaction chromatography (HILIC) separations were discussed. Recent results related to preparation methods of monolithic silica were also covered. The characteristics and properties of silica monoliths and some applications of monolithic silica columns for different analytical and bioanalytical fields will be commented. 相似文献
6.
Pavel Jandera Jiří Urban Veronika Škeříková Pavel Langmaier Romana Kubíčková Josef Planeta 《Journal of chromatography. A》2010,1217(1):22-33
We prepared hybrid particle-monolithic polymethacrylate columns for micro-HPLC by in situ polymerization in fused silica capillaries pre-packed with 3–5 μm C18 and aminopropyl silica bonded particles, using polymerization mixtures based on laurylmethacrylate–ethylene dimethacrylate (co)polymers for the reversed-phase (RP) mode and [2-(methacryloyloxy)ethyl]-dimethyl-(3-sulfopropyl) zwitterionic (co)polymers for the hydrophilic interaction (HILIC) mode. The hybrid particle-monolithic columns showed reduced porosity and hold-up volumes, approximately 2–2.5 times lower in comparison to the pure monolithic columns prepared in the whole volume of empty capillaries. The elution volumes of sample compounds are also generally lower in comparison to packed or pure monolithic columns. The efficiency and permeability of the hybrid columns are intermediate in between the properties of the reference pure monolithic and particle-packed columns. The chemistries of the embedded solid particles and of the interparticle monolithic moiety in the hybrid capillary columns contribute to the retention to various degrees, affecting the selectivity of separation. Some hybrid columns provided improved separations of proteins in comparison to the reference particle-packed columns in the reversed-phase mode. Zwitterionic hybrid particle-monolithic columns show dual mode retention HILIC/RP behaviour depending on the composition of the mobile phase and allow separations of polar compounds such as phenolic acids in the HILIC mode at lower concentrations of acetonitrile and, often in shorter analysis time in comparison to particle-packed and full-volume monolithic columns. 相似文献
7.
本文采用自由基聚合法原位制备了两种杂化毛细管整体柱。首先以含有一个甲基丙烯酸基团的多面体低聚倍半硅氧烷(POSS)试剂(Bu-POSS)为单体、以含有多个甲基丙烯酸基团的POSS试剂(POSS-MA)为交联剂在二元致孔剂(正丙醇/聚乙二醇400)和引发剂(偶氮二异丁腈)存在下发生热引发聚合,在毛细管中形成聚(Bu-POSS-co-POSS-MA)杂化整体柱;另外仅以POSS-MA为单体在相同条件下制备聚(POSS-MA)杂化整体柱,并将这两种杂化整体柱应用于小分子的毛细管液相色谱(cLC)分析。结果表明,含POSS杂化整体柱具有制备简单、重现性好以及稳定性高的特点。此外,利用聚(POSS-MA)杂化整体柱表面剩余的甲基丙烯酸基团,可以将功能单体(甲基丙烯酸硬脂酸酯等)化学键合到整体柱上,不但可以提高色谱柱效,而且使其具有不同的选择性。本文所发展的以POSS试剂为原料采用自由基聚合法制备杂化整体柱的方法为新型杂化整体柱的制备提供了一种新思路。 相似文献
8.
An alternate pumping-recycle system utilizing a commercially available low dead-volume switching valve was developed for microcolumn LC. The recycle system had two separation columns, and the dead volume of the recycling lines was kept to a minimum by avoiding passage of the sample through the pump chamber, sample injector, and the normal path length of a conventional UV detector. The drawback of the high total back pressure caused by the second column that is placed after the detector was overcome by on-column detection, and this eliminated the need for a high pressure flow cell. The system was used for the separation of an authentic mixture of benzene, benzene-1,3,5-d3, and benzene-d6. Baseline separation was accomplished after six cycles and the calculated theoretical plate number for benzene was 230,000. It was observed that the theoretical plate number (N) increased linearly with increasing number of cycles, and the N per unit time increased with increasing inlet pressure. The separation conditions were optimized and the separation of benzene and benzene-d6 was accomplished within 75 min at 2.5 MPa inlet pressure. 相似文献
9.
The performance of a monolithic silica capillary column coated with poly(octadecyl methacrylate) (ODM column) for the reversed-phase liquid chromatographic separation of some polar and non-polar compounds was studied, and the results were compared to those obtained by using a monolithic silica capillary column modified with octadecylsilyl-(N,N-diethylamino)silane (ODS column). Benzene and naphthalene derivatives, polycyclic aromatic hydrocarbons (PAHs), steroids, alkyl phthalates, and tocopherol homologues were used as test samples. In general, compounds with aromatic character, rigid and planar structures, and lower length-to-breadth ratios (more compacted structures) seem to have more preference for the polymer coated stationary phase (ODM). Compounds with acidic character have also a higher retention on ODM columns because of the presence of ester groups in the stationary phase. The polymer coated column allowed the separation of some PAHs, alkyl phthalates, steroids, and of beta- and gamma-tocopherol isomers which cannot be separated under the same conditions on ODS columns, while keeping similar column efficiency. These results allowed to suggest ODM columns as a good alternative to conventional ODS columns for reversed-phase liquid chromatography. 相似文献
10.
Enantioseparations of racemic nonsteroidal anti-inflammatory drugs (naproxen, ibuprofen, ketoprofen, flurbiprofen, suprofen,
indoprofen, cicloprofen, and carprofen) were performed by nano-liquid chromatography, employing achiral capillary columns
and heptakis(2,3,6-tri-O-methyl)-β-cyclodextrin (TM-β-CD) or hydroxylpropyl-β-cyclodextrin (HP-β-CD) as a chiral mobile phase additive (CMPA). Working
under the same experimental conditions (in terms of mobile phase and linear velocity), the performance of a RP-C18 monolithic
column was compared with that of a RP-C18 packed column of the same dimensions (100 μm i.d. × 10 cm). Utilizing a mobile phase
composed of 30% ACN (v/v) buffered with 50 mM sodium acetate at pH 3, and containing 30 mM TM-β-CD, the monolithic column
provided faster analysis but lower resolution than the packed column. This behavior was ascribed to the high permeability
of the monolithic column, as well as to its minor selectivity. HP-β-CD was chosen as an alternative to TM-β-CD. Employing
the monolithic column, the effects of different parameters such as HP-β-CD concentration, mobile phase composition, and pH
on the retention factor and the chiral resolution of the analytes were studied. For the most of the analytes, enantioresolution
(which ranged from R
s = 1.80 for naproxen to R
s = 0.86 for flurbiprofen) was obtained with a mobile phase consisting of sodium acetate buffer (25 mM, pH 3), 10% MeOH, and
15 mM HP-β-CD. When the same experimental conditions were used with the packed column, no compound eluted within 1 h. Upon
increasing the percentage of organic modifier to favor analyte elution, only suprofen eluted within 30 min, with an R
s value of 1.14 (20% MeOH). Replacing MeOH with ACN resulted in a loss of enantioresolution, except for naproxen (R
s = 0.89). 相似文献
11.
Gatschelhofer C Magnes C Pieber TR Buchmeiser MR Sinner FM 《Journal of chromatography. A》2005,1090(1-2):81-89
Novel monolithic capillary HPLC columns were prepared via ring opening metathesis polymerization (ROMP) within the confines of fused silica columns with 200 microm i.d. using norborn-2-ene (NBE), 1,4,4a,5,8,8a-hexahydro-1,4,5,8, exo, endo-dimethanonaphthalene (DMN-H6) as monomers, 2-propanol and toluene as porogens and RuCl2(PCy3)2(CHPh) as initiator. Using the monolithic capillary HPLC columns, different sets of analytes (i.e. standard systems) were used for the evaluation of the monolithic columns: (i) a protein standard consisting of six proteins in the range of 5000-66 000 g/mol, (ii) an insulin-albumin standard, and (iii) a peptide standard obtained from a tryptic digest of cytochrome C. With these three different standard systems the reproducibility of synthesis in terms of separation performance proved to be 1-2% relative standard deviation in tR. Variation of polymerization parameters had a significant influence on the monolithic morphology and therefore separation efficiency and back pressure. The maximum analytical loading capacity of ROMP-derived monolithic capillary columns for albumin was found to be 30-125 ng, depending on the monomer content. Long-term stability studies showed no alteration in separation performance. 相似文献
12.
Three approaches are described to synthesize acrylic non-particulate beds (also called continuous beds or monoliths) in aqueous polymerization media for reversed-phase capillary liquid chromatography/electrochromatography. In the first, hexyl acrylate comonomer was dissolved together with water soluble polar comonomers using a non-ionic detergent. In the second, a new alkyl ammonium salt comonomer, (3-allylamino-2-hydroxypropyl)dodecyldimethylammonium chloride was used, which is water soluble and has detergent properties itself. The alkyl group of this comonomer provides hydrophobicity while the ionic groups generate electroosmosis in the non-particulate bed. In the third approach, the alkyl comonomer was used as a detergent to dissolve another hydrophobic comonomer in an aqueous polymerization medium. All three approaches were evaluated with respect to hydrophobicity, efficiency and electroosmotic properties of the beds. Hydrophobicity expressed as methylene group selectivity for the three types of the beds in 50% methanol mobile phase was 1.86, 1.16 and 1.78, electroosmotic mobility -5.14 x 10(-5), 6.89 x 10(-5) and 6.37 x 10(-5) cm2 V(-1) s(-1) and efficiency for the retained compound (methylparabene) 67,000, 93,000 and 110,000 plates m(-1) correspondingly. The columns were tested using pressure driven capillary chromatography and capillary electrochromatography. The influence of polymerization temperature on hydrodynamic permeability, separation impedance and inverse size exclusion porosimetry characteristics were used to evaluate the separation columns. The increase of the polymerization temperature resulted higher permeability of the bed, separation impedance and lower polymeric skeleton porosity. Further characterisation was provided by examining the separation efficiency observed for a series of benzoic acid esters and alkyl parabens. 相似文献
13.
Organic polymer monolithic capillary columns were prepared in fused-silica capillaries by radical co-polymerization of ethylene dimethacrylate and butyl methacrylate monomers with azobisisobutyronitrile as initiator of the polymerization reaction in the presence of various amounts of porogenic solvent mixtures and different concentration ratios of monomers and 1-propanol, 1,4-butanediol, and water. The chromatographic properties of the organic polymer monolithic columns were compared with those of commercial silica-based particulate and monolithic capillary and analytical HPLC columns. The tests included the determination of H-u curves, column permeabilities, pore distribution by inversed-SEC measurements, methylene and polar selectivities, and polar interactions with naphthalenesulphonic acid test samples. Organic polymer monolithic capillary columns show similar retention behaviour to chemically bonded alkyl silica columns for compounds with different polarities characterized by interaction indices, Ix, but have lower methylene selectivities and do not show polar interactions with sulphonic acids. The commercial capillary and analytical silica gel-based monolithic columns showed similar selectivities and provided symmetrical peaks, indicating no significant surface heterogeneities. To allow accurate characterization of the properties of capillary monolithic columns, the experimental data should be corrected for extra-column contributions. With 0.3 mm ID capillary columns, corrections for extra-column volume contributions are sufficient, but to obtain true information on the efficiency of 0.1 mm ID capillary columns, the experimental bandwidths should be corrected for extra-column contributions to peak broadening. 相似文献
14.
Schlemmer B Gatschelhofer C Pieber TR Sinner FM Buchmeiser MR 《Journal of chromatography. A》2006,1132(1-2):124-131
Monolithic columns for capillary HPLC were prepared via ring-opening metathesis polymerization (ROMP) from cis-cyclooctene (COE), tris(cyclooct-4-enyl-1-oxy)methylsilane (CL) as monomers, 2-propanol and toluene as porogens and RuCl(2)(Py)(2)(IMesH(2))(CHC(6)H(5)) (Py=pyridine, IMesH(2)=1,3-dimesityl-4,5-dihydroimidazolin-2-ylidene) as initiator within the confines of 200 microm i.d. fused silica columns. For evaluation of the novel monolithic capillary HPLC columns, a protein standard consisting of six proteins in the molecular weight range of 5800-66000 g/mol, i.e. ribonuclease A, insulin, albumin, lysozyme, myoglobin and beta-lactoglobulin, was used. Reproducibility of synthesis was checked by determining the relative standard deviation (RSD) in retention times (t(R)), which was found to be in the range of 2.9-3.9% for all analytes. Variations in polymer kinetics were realized by adding different amounts of free pyridine and had a significant influence on the monolith's morphology, the backpressure and retention times. On the contrary, variations in monomer content and COE to CL ratio showed only minor changes on these parameters. Long-term stability of 1000 runs at 50 degrees C showed excellent stability of the columns and no significant alteration in separation performance was observed in combination with slightly decreased retention times (approx. 1.6-7.2% for all analytes). 相似文献
15.
Preparation of monolithic capillary columns for capillary electrochromatography by γ-ray irradiation
Yu-Ping Zhang Li-Qun Fan Kwang-Pill Lee Yi-Jun Zhang Seong-Ho Choi Wen-Jun Gong 《Mikrochimica acta》2007,158(3-4):353-360
A novel approach is introduced and evaluated for the preparation of silica-based monoliths by a sol–gel technique where in situ polymerization was carried out by γ-ray irradiation within the capillary. The γ-radiation-initiated synthesis generated radicals
directly on the monomer, thereby avoiding use of any initiator. The chromatographic behavior of the capillary monolithic columns
was studied in the modes of CEC, p-CEC and low pressure-driven separation, all of which exhibited reversed-phase character.
Various operational parameters, such as column temperature, separation voltage, acetonitrile content and buffer pH, were varied
to assess their influence on column performance in the separation of a series of neutral compounds including thiourea, benzene,
toluene, ethyl benzene, biphenyl and naphthalene. A scanning electron micrograph of a cross-section of the capillary column
showed that the gel took the form of a spherical particle aggregate and adhered to the column inner wall. It provided a viable
alternative to either thermally initiated or photo polymerization for the preparation of monolithic columns. 相似文献
16.
Five common food preservatives were analyzed by capillary electrochromatography, utilizing a methacrylate ester-based monolithic capillary as separation column. In order to optimize the separation of these preservatives, the effects of the pore size of the polymeric stationary phase, the pH and composition of the mobile phase on separation were examined. For all analytes, it was found that an increase in pore size caused a reduction in retention time. However, separation performances were greatly improved in monolithic columns with smaller pore sizes. The pH of the mobile phase had little influence on separation resolution, but a dramatic effect on the amount of sample that was needed to be electrokinetically injected into the monolithic column. In addition, the retention behaviors of these analytes were strongly influenced by the level of acetonitrile in the mobile phase. An optimal separation of the five preservatives was obtained within 7.0 min with a pH 3.0 mobile phase composed of phosphate buffer and acetonitrile 35:65 v/v. Finally, preservatives in real commercial products, including cold syrup, lotion, wine, and soy sauces, were successfully determined by the methacrylate ester-based polymeric monolithic column under this optimized condition. 相似文献
17.
Congying Gu Jun He Jinping Jia Nenghu Fang Robert Simmons Shahab A. Shamsi 《Journal of chromatography. A》2010,1217(4):530-539
A surfactant-bound monolithic stationary phase based on the co-polymerization of 11-acrylamino-undecanoic acid (AAUA) is designed for capillary high performance liquid chromatography (HPLC). Using D-optimal design, the effect of the polymerization mixture (concentrations of monomer, crosslinker and porogens) on the chromatographic performance (resolution and analysis time) of the AAUA–EDMA monolithic column was evaluated. The polymerization mixture was optimized using three proteins as model test solutes. The D-optimal design indicates a strong dependence of chromatographic parameters on the concentration of porogens (1,4-butanediol and water) in the polymerization mixture. Optimized solutions for fast separation and high resolution separation, respectively, were obtained using the proposed multivariate optimization. Differences less than 6.8% between the predicted and the experimental values in terms of resolution and retention time indeed confirmed that the proposed approach is practical. Using the optimized column, fast separation of proteins could be obtained in 2.5 min, and a tryptic digest of myoglobin was successfully separated on the high resolution column. The physical properties (i.e., morphology, porosity and permeability) of the optimized monolithic column were thoroughly investigated. It appears that this surfactant-bound monolith may have a great potential as a new generation of capillary HPLC stationary phase. 相似文献
18.
In this study, eight benzophenones, which are commonly used as UV filters in various cosmetics and plastics, were analyzed by capillary electrochromatography with a methacrylate ester-based monolithic column. The effects of the composition and pH of mobile phase, porogenic solvent ratio, and 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) content on benzophenone separations were examined. For all benzophenones, separation performances were markedly improved in monolithic columns with larger 1-propanol ratio and higher AMPS content. Furthermore, a twofold increase in AMPS content almost reduced the separation time in half when a monolithic column had an adequately high surface area, i.e. monolithic column was produced in a higher ratio of 1-propanol. As well, the retention behaviors of these analytes in the monolithic column were strongly influenced by the level of acetonitrile in the mobile phase, and the pH of the mobile phase also had an apparent influence on separation resolution. 相似文献
19.
Cantó-Mirapeix A Herrero-Martínez JM Mongay-Fernández C Simó-Alfonso EF 《Electrophoresis》2008,29(18):3866-3874
The preparation of hexyl methacrylate (HMA) monolithic columns for CEC separations has been investigated with two initiation systems: (i) ammonium peroxodisulphate and TEMED to activate the polymerization reaction, and (ii) by thermal initiation with AIBN. For both initiators, the influence of composition of porogenic solvent on morphological and chromatographic properties of monoliths was investigated. Two porogenic solvent systems, aqueous and non-aqueous media, were also studied for monolithic beds polymerized with AIBN. Under optimal conditions, low minimum plate heights (9.6 mum for peroxodisulphate, 8.4 and 10.0 mum for AIBN in aqueous and non-aqueous porogenic solvents, respectively) were obtained. A comparison in terms of chromatographic performance of HMA monoliths with butyl methacrylate columns polymerized with both initiators was also performed. The resulting HMA-based stationary phases also exhibited a good repeatability and column-to-column reproducibility, with RSD values below 5.6% in the studied electrochromatographic parameters. The potential of HMA-based columns was demonstrated by the analysis of complex mixtures of polyaromatic hydrocarbons and anabolic steroids. 相似文献
20.
A. A. Korolev V. E. Shiryaeva T. P. Popova A. A. Kurganov 《Journal of Analytical Chemistry》2007,62(4):313-318
Monolithic capillary columns based on silica gel were tested in the course of high-speed gas-chromatographic separations of a five-component mixture of C1–C4 hydrocarbons. It was found that short-length monolithic columns could be used because of their high specific efficiency; this allowed us to shorten the column dead time and the duration of analysis. The column performance of about 1000 theoretical plates per second was reached. The test sorbate mixture was completely separated on a 58.5-cm column with an efficiency of about 18 700 theoretical plates in a time shorter than 17 s. It was noted that CO2 and N2O should be predominantly used as carrier gases. 相似文献