首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The stoichiometry of boron nitride (BN) films, which are deposited with self-bias-assisted radio frequency (rf) magnetron sputtering of a hexagonal boron nitride (hBN) target, has been investigated with Auger electron spectroscopy (AES) and the MCs+-mode of secondary ion mass spectroscopy (MCs+-SIMS) for the sake of a better understanding of the growth mechanism of cubic boron nitride (cBN). The cubic fraction of the films is determined with Fourier-transform infrared spectroscopy (FTIR). It is shown that full stoichiometry of the deposited films is decisive for cBN-growth. A substrate bias voltage can increase the N concentration of a growing film under N-deficient deposition conditions. This effect is shown to be temperature dependent. PACS 52.77.Dq; 81.15.Cd; 68.55.Nq  相似文献   

2.
Preferentially oriented cubic boron nitride films on nickel substrates have been grown using hot-filament-assisted rf plasma chemical vapor deposition method. X-ray photoelectron spectroscopy shows that the cubic boron nitride films are stoichiometric. Scanning electron microscopy and X-ray diffraction show that the films are of high quality with well-faceted and (220) preferentially oriented grains, without X-ray diffraction detectable hexagonal boron nitride phase. The nucleation and growth process has been investigated. After 40min deposition, well aligned, well faceted cubic boron nitride nuclei can be seen on the substrnies, and after 2 h deposition, the rectangular grains can be seen on the substrate with their corresponding edges parallel to each other in scanning electron microscopic images. The ratio of the diffraction peak height of (220) face to that of (111) face is about 5.2 in the X-ray diffraction pattern, but the corresponding value of the random cubic boron nitride crystallites is only 0.06.  相似文献   

3.
Theoretical and experimental investigations on the dependence of the intensity of infrared (IR) absorption of poly- crystalline cubic boron nitride thin films under the residual compressive stress conditions have been performed. Our results indicate that the intensity of the IR absorption is proportional to the total degree of freedom of all the ions in the ordered regions. The reduction of interstitial Ar atom concentration, which causes the increase in the ordered regions of cubic boron nitride (cBN) crystallites, could be one cause for the increase in the intensity of IR absorption after residual compressive stress relaxation. Theoretical derivation is in good agreement with the experimental results concerning the IR absorption intensity and the Ar interstitial atom concentration in cubic boron nitride films measured by energy dispersion X-ray spec- troscopy. Our results also suggest that the interstitial Ar is the origin of residual compressive stress accumulation in plasma enhanced cBN film deposition.  相似文献   

4.
Gang Qi 《Applied Surface Science》2010,256(10):3249-3252
Formation of cubic boron nitride by r.f. magnetron sputtering has been studied with O2 addition to the common working gas Ar/N2. The chemical and the phase composition were determined with Auger electron spectroscopy sputter depth profiling and Fourier transform infrared spectroscopy. The result shows that oxygen hinders the formation of cBN in sufficient nitrogen-supply, but facilitates the growth of cBN in insufficient nitrogen-supply. With insufficient nitrogen-supply, there exists an optimal oxygen-supply in the working gas that promoted the establishment of the stoichiometric condition in the growing film. O-concentration in the film increases with oxygen-supply in the working gas. cBN forms only when the oxygen concentration is below 5% and cN/cB (ratio of concentration of nitrogen atoms and boron atoms) is 1 in the film.  相似文献   

5.
A new previously unknown phase of boron nitride with a hardness of 0.41–0.63 GPa has been pre-pared by the supercritical fluid synthesis. The presence of a new phase is confirmed by the X-ray spectra and IR absorption spectra, where new reflections and bands are distinguished. The fundamental reflection of the X-ray diffraction pattern is d = 0.286–0.291 nm, and the characteristic band in the infrared absorption spectrum is observed at 704 cm?1. The X-ray diffraction pattern and the experimental and theoretical infrared absorption spectra show that a new synthesized boron nitride phase can be a cluster crystal (space group 211) with a simple cubic lattice. Cage clusters of a fullerene-like morphology B24N24 with point symmetry O are arranged in lattice sites.  相似文献   

6.
杨杭生  谢英俊 《物理学报》2007,56(9):5400-5407
在立方氮化硼薄膜气相生长过程中生成的无定形初期层和乱层结构氮化硼中间层,一直是阻碍立方氮化硼薄膜外延生长的主要原因.系统地分析了硅衬底预处理对立方氮化硼薄膜中无定形初期层成分的影响,发现在等离子体化学气相生长法制备薄膜时,硅衬底上形成无定形初期层的可能原因有氧的存在、离子轰击以及高温下硅的氮化物的形成.在H2气氛中1200K热处理硅衬底可以有效地减少真空室中残留氧浓度,除去硅表面的自然氧化层,保持硅衬底表面晶体结构.控制衬底温度不超过900 K,就能防止硅的氮化物的形成,成功地除去无 关键词: 立方氮化硼薄膜 等离子体化学气相生长 界面 电子显微镜  相似文献   

7.
For the first time, patterned growth of boron nitride nanostructures (BNNs) is achieved by thermal chemical vapor deposition (TCVD) technique at 1150 °C using a mixture of FeS/Fe2O3 catalyst supported in alumina nanostructured, boron amorphous and ammonia (NH3) as reagent gas. This innovative catalyst was synthesized in our laboratory and systematically characterized. The materials were characterized by X-ray diffraction (XRD), Raman spectroscopy, Fourier-transform infrared spectroscopy (FTIR), Thermogravimetric analysis (TGA), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The X-ray diffraction profile of the synthesized catalyst indicates the coexistence of three different crystal structures showing the presence of a cubic structure of iron oxide and iron sulfide besides the gamma alumina (γ) phase. The results show that boron nitride bamboo-like nanotubes (BNNTs) and hexagonal boron nitride (h-BN) nanosheets were successfully synthesized. Furthermore, the important contribution of this work is the manufacture of BNNs from FeS/Fe2O3 mixture.  相似文献   

8.
Gd2O3:Eu3+ luminescent thin films have been grown on Al2O3(0001) substrates using pulsed-laser deposition. The films grown at different deposition conditions showed different crystalline phases, surface morphologies and luminescent characteristics. Both cubic and monoclinic crystalline phases were observed for the Gd2O3:Eu3+ films, and the crystalline structure and the surface morphology of the films were highly dependent on the oxygen pressure and substrate temperature. The cubic system showed a higher luminescence than the monoclinic system. The luminescence characteristics were strongly influenced by not only the crystalline structure but also the surface morphology of the films. The photoluminescencebrightness data obtained from Gd2O3:Eu3+ films indicate that Al2O3(0001) is a promising substrate for growth of high-quality Gd2O3:Eu3+ thin-film red phosphor. In particular, the Gd2O3:Eu3+ films showed a much better photoluminescence behavior than a Y2O3:Eu3+ films with the same thickness. PACS 78.20.-e; 78.55.-m; 78.66.-w  相似文献   

9.
杨杭生 《物理学报》2006,55(8):4238-4246
利用感应耦合等离子体增强化学气相沉积法以Ar,He,N2和B2H6为反应气体制备了高纯立方氮化硼薄膜.用四极质谱仪对等离子体状况进行了系统的分析,发现B2H6完全被电离而N2只是部分被电离.H2和过量的N2在等离子体中生成大量中性的H原子和活化的N*2,它们与表面的相互作用严重地阻碍了立方 关键词: 立方氮化硼薄膜 等离子体 质谱  相似文献   

10.
Thin Er3+, Yb3+ co-doped Y2O3 films were grown on (1 0 0) YAG substrates by pulsed laser deposition. Ceramic targets having different active ion concentration were used for ablation. The influence of the rare-earth content and oxygen pressure applied during the deposition on the structural, morphological and optical properties of the films were investigated. The films deposited at the lower pressure, 1 Pa, and at 1/10 Er to Yb doping ratio are highly textured along the (1 1 1) direction of the Y2O3 cubic phase. In addition to the crystalline structure, these films possess smoother surface compared to those prepared at the higher pressure, 10 Pa. All other films are polycrystalline, consisting of cubic and monoclinic phases of Y2O3. The rougher surface of the films produced at the higher-pressure leads to higher scattering losses and different behavior of the reflectivity spectra. Optical anisotropy in the films of less than 0.004 was measured regardless of the monoclinic structure obtained. Waveguide losses of about 1 dB/cm at 633 nm were obtained for the films produced at the lower oxygen pressure.  相似文献   

11.
Local vibrations of oxygen in Ge crystals grown by the Czochralski method adopting liquid-B2O3 encapsulation and GeO2 powder doping were investigated by Fourier-transform infrared spectroscopy. Strong absorption peaks at 855 cm−1, originating in local vibration of interstitially dissolved oxygen Oi as Ge–Oi–Ge quasi-molecules, developed depending on the doped amount of GeO2. Similarly, an absorption peak related to the combined vibration of Ge–Oi–Ge was found at 1264 cm−1 and the conversion factor from the peak intensity to the oxygen concentration was evaluated to be 1.15×1019 cm−2. By prolonged annealing at 350 °C an absorption peak developed at 780 cm−1, indicating formation of oxygen-related thermal donors. From the variations of carrier density and oxygen concentration, one donor was found to possess about 15 Oi atoms.  相似文献   

12.
Preparation of super-hard coatings by pulsed laser deposition   总被引:1,自引:0,他引:1  
Amorphous diamond-like carbon (DLC) films and nanocrystalline cubic boron nitride (c-BN) films were prepared by pulsed laser deposition. DLC films with 80 to 85% sp3 bonds prepared at a laser fluence above 6 J/cm2 and a substrate temperature below 100 °C show high compressive stresses in the range of 8 to 10 GPa. Those stresses can be completely removed by means of pulsed laser annealing, allowing the preparation of DLC films with several-micrometre thickness. c-BN films were prepared with additional ion-beam bombardment at a substrate temperature of 250 °C. The properties of DLC and c-BN films deposited at high growth rates up to 100 nm/min are presented . PACS 81.15.Fg; 68.60.Bs: 62.40.+i  相似文献   

13.
* ion=100 eV. Above E* ion the average density (deduced from X-ray reflectivity) shows a strong increase, indicating the sudden appearance of the cubic boron nitride phase consistent with the sp3 concentration deduced from IR absorption spectroscopy. The in-plane X-ray diffraction shows that this cubic phase consists of small nanocrystals of 70 Å linear size. Received: 26 November 1996/Accepted: 27 January 1997  相似文献   

14.
Cubic boron nitride (cBN) films were deposited by rf bias-assisted dc plasma-jet chemical vapor deposition. Effects of H2 flow rate and bias voltage on the growth of the cBN films were investigated. High phase purity cBN (over 90%) can be obtained in a wide range of H2 flow rates of 5–10 sccm and bias voltages from -50 to -100 V. Nearly phase pure cBN films were deposited at a H2 flow rate of 10 sccm and bias voltages of -60 V and -70 V. The deposited films were characterized by Raman spectroscopy, Fourier-transform infrared spectroscopy, and glancing angle X-ray diffraction. Raman peaks were observed for all the cBN films, which indicate a good crystallinity of the films. PACS 61.10.Eq; 78.30.-j; 81.15.Gh  相似文献   

15.
Erbium-doped Y2O3 films were prepared by aerosol-UV assisted metal-organic chemical vapour deposition (MOCVD) at 410 °C. The effects of humidity of carrier gas and UV-assistance on their structure and optical properties were investigated on the as-deposited and thermal annealed films using infrared spectroscopy, X-ray diffraction and transmission electron microscopy. It was found that the as-deposited Er:Y2O3 films crystallise in the Y2O3 cubic structure and present a very low organic contamination when the deposition takes place under high air humidity and, even better, with UV-assistance. After annealing, two different structural phases are observed corresponding to the cubic and the monoclinic structures of Y2O3. The Er3+ luminescence analysed in the visible and IR regions, shows the classical green transitions. The best optical properties were obtained with as-deposited and annealed Er:Y2O3 films grown under high air humidity with UV-assistance. Under such deposition conditions, 4I13/2 lifetimes was found to be 3.07 and 6.1 ms for films annealed at 800 and 1000 °C, respectively, and up-conversion phenomena were underlined. This indicates that the deposition conditions, in particular air humidity, play an important role in the luminescent properties even after annealing.  相似文献   

16.
Large-area, 1-μm-thick cubic boron nitride (cBN) films were deposited on (001) silicon substrates by electron-cyclotron-resonance-enhanced microwave-plasma chemical vapor deposition (ECR-MP CVD) in a mixture of He-Ar-N2-BF3-H2 gases. With the assistance of fluorine chemistry in the gas phase and substrate reactions, the phase purity of the sp3-configuration was improved to over 85% at a reduced substrate bias voltage of -40 V. The grown films show clear Raman transversal optical (TO) and longitudinal optical (LO) phonon vibration modes, characteristic of cBN. Such Raman spectral characteristics are the first ever observed in cBN films prepared under ECR-MP CVD conditions. Received: 3 May 2002 / Accepted: 7 May 2002 / Published online: 22 November 2002 RID="*" ID="*"Corresponding author. Fax: +852-2788/7830, E-mail: apwjzh@cityu.edu.hk  相似文献   

17.
立方氮化硼薄膜的光学带隙   总被引:1,自引:0,他引:1       下载免费PDF全文
邓金祥  汪旭洋  姚倩  周涛  张晓康 《物理学报》2008,57(10):6631-6635
用射频溅射法在p型Si(100)衬底上沉积立方氮化硼(c-BN)薄膜,薄膜的成分由傅里叶变换红外谱标识,用紫外-可见分光光度计测量了c-BN薄膜的反射光谱,利用K-K(Kramers-Kroning)关系从反射谱计算出c-BN薄膜的光吸收系数,进而确定c-BN薄膜的光学带隙.对于立方相含量为55.4%的c-BN薄膜,光学带隙为5.38eV. 关键词: 立方氮化硼薄膜 光学带隙 K-K关系  相似文献   

18.
Silver films evaporated and maintained at room temperature in a variety of controlled residual gas environments are studied. Experimental techniques include: (1) precise in situ polarization-modulation ellipsometry (λ = 5461 A?) and dc resistivity as functions of time (after deposition) and pressure; (2) mass spectroscopy of residual gas; (3) optical spectra (1.8–3.8 eV) taken ellipsometrically on several films in situ; (4) Auger electron spectroscopy of the silver surfaces; and (5) absolute reflectance (λ = 5461 A? and 10.6 microm) and scattered light (5461 Å) measured after exposure of the films to air. H2, N2, CO, CO2, or CH4 present during deposition (p? 10?5torr) shows no effects on the optical properties in the visible or infrared. Water vapor or oxygen present during deposition increases the scattered light (surface roughness) and optical absorption of the films in the visible. Films prepared in high partial pressures of O2 (about 10?5 torr) show significantly shorter optical and dc relaxation times and slightly enhanced infrared (λ = 10.6 microm) absorption. These results for stabilized films are understood better by considering the surface dynamical changes occurring in the films prior to stabilization. In the first few hours after deposition, the films anneal principally by surface self-diffusion. During this time the reflectance and dc conductivity increase typically by 0.4% and 10% respectively. The presence in the films of dissolved oxygen can enhance or inhibit self-diffusion depending on whether the oxygen is mobile or immobile. When dissolved oxygen diffuses to the surface, it resides there in an optically-absorbing chemisorbed state, inducing a surface state within about 2.5 eV of the Fermi level. These surface-dynamical changes often continue for more than a day before diminishing to a level beneath the sensitivity of the ellipsometer. Upon exposure to air the Ag films physisorb about 20 Å of water vapor and undergo further optically-absorbing oxygen chemisorption. All of the measurements are discussed in a consistent way to reveal further details of the mechanisms contributing to light scattering and optical absorption in the films as a function of oxygen partial pressure.  相似文献   

19.
We have synthesized boron carbon nitride thin films by radio frequency magnetron sputtering. The films structure and composition were characterized by X-ray diffraction, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The results indicate that the three elements of B, C, N are chemically bonded with each other and atomic-level hybrids have been formed in the films. The boron carbon nitride films prepared in the present experiment possess a disordered structure. The influence of PN2/PN2+Ar, total pressure and substrate bias voltage on the composition of boron carbon nitride films is investigated. The atomic fraction of C atoms increases and the fractions of B, N decrease with the decrease of PN2/PN2+Ar from 75% to 0%. There is an optimum total pressure. That is to say, the atomic fractions of B, N reach a maximum and the fraction of C atoms reaches a minimum at the total pressure of 1.3 Pa. The boron carbon nitride films exhibit lower C content and higher B, N contents at lower bias voltages. And the boron carbon nitride films show higher C content and lower B, N contents at higher bias voltages.  相似文献   

20.
Micropowders of cubic boron nitride doped with neodymium are prepared under high-pressure and high-temperature conditions. The phase composition of the micropowders is studied using X-ray diffractometry and X-ray fluorescence analysis. The photoluminescence, photoluminescence excitation spectra, and the life-time of the 4 F 3/2 excited state of Nd ions introduced into cubic boron nitride are investigated. In photoluminescence spectra of the micropowders, structured bands are recorded in the range of the 4 F 3/24 I 9/2 and 4 F 3/24 I 11/2 electronic transitions. A higher intensity of the first structured band indicates that the corresponding photoluminescence in cubic boron nitride doped with neodymium is excited by the “three-level scheme.” It is demonstrated that an increase in the concentration of the neodymium compound in the growth batch leads to the formation of two luminescence centers Nd1 and Nd2 formed by neodymium ions located in different low-symmetry crystal fields in the micropowders. This is confirmed by X-ray diffraction investigations and the study of the photoluminescence decay curves. The 4 F 3/2 short-lived state is assigned to the Nd ions forming the Nd1 centers, and the long-lived state is attributed to the Nd ions forming the Nd2 centers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号