首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Reactions of bis(1-oxopyridine-2-thione) NiII or CuII with 2,2-bipyridine (bipy) or 1,10-phenanthroline (phen) yield complexes of stoichiometry: Ni(C5H4NOS)2L {L = bipy, two isomers: (1) and (2), L = phen, one isomer (3)} and Cu(C5H4NOS)2(phen)·0.75CHCl3 (4). The spectroscopy (i.r., u.v.-vis., e.s.r.) and magnetism studies of the above complexes are described. On the basis of conductivity, the CuII-phen complex has been formulated as [Cu(C5H4NOS)(phen)2][Cu(C5H4NOS)3]·1.5CHCl3 (4). The vis. absorption spectra support similar octahedral structures for the minor bipy isomer (2) and for the NiII-phen complex [(3)], whereas the major isomer [(1)] has a different structure. The e.s.r. spectrum of the CuII-phen complex (4) is commensurate with an elongated octahedral structure. New methods for the preparation and spectroscopy of M(C5H4NOS)2 (M = Mn, Ni, Cu or Zn) compounds have been investigated.  相似文献   

2.
Reaction of Cu(NO3)2 · 3H2O, 1-(N-salicyalideneimine)-2-(N,N-dimethyl)-aminoethane (HL1), LiClO4, and sodium dicyanamide (Nadca) in aqueous medium affords a dimeric complex [Cu2(L1)21, 5-dca)](ClO4) (1). Single crystal X-ray analysis reveals that 1 is dinuclear with copper(II) ions bridged by a single dicyanamide group in end-to-end fashion. The coordination environment around copper(II) is square planar. Two nitrogens and oxygen of the tridentate Schiff-base ligand (HL1) occupy three coordination sites of the square plane while the remaining site is occupied by the nitrogen of a terminal nitrile of the bridging dca. The nitrogen of the other terminal nitrile group of the μ1,5-dca ligand connects a neighboring [CuL1] unit to yield [Cu2(L1)21,5-dca)](ClO4) (1). Variable temperature magnetic susceptibility measurements show that the magnetic interaction is ferromagnetic (J = 1.93 cm?1). The results of a magnetic model are in good agreement with the experimental data.  相似文献   

3.
An X-ray diffraction study has shown that tetracarbonyl[η4-(1,1,3,4-tetramethyl- silole)]chromium has a conjugated 1,3-diene bonded to a distorted piano stool Cr(CO)4 fragment. The intra-ring CC bond lengths (139.2, 145.8 and 139.0 pm) indicate predominant diene-to-metal donor bonding. The bending angle of the silole ligand is 37.7°, and the Cr(CO)2 trans angles are 105.87 and 149.12°.  相似文献   

4.
An X-ray study of [(μ-η23-HCCCH2)Cp2Mo2(CO)4]+(BF4) (1) and [(μ-η23-HCCCMe2)Cp2Mo2(CO)4]+(BF4) (2) reveals their structures to be similar to the structure of neutral compounds of the series (μ-η22-RCCR)Cp2Mo2(CO)4, the difference between 1 and 2 being mainly due to the markedly different MoC+ bond lengths, which accounts for different stability and fluxional behavior of these compounds in solution.  相似文献   

5.
6.
The reaction of Fe2(CO)9 with phenyldithiobenzoate PhCS2Ph 1 afforded four colored compounds: [(μ-η3(C,S,S)PhCS2Ph)]Fe2(CO)62, (μ-S)2Fe3(CO)93, (μ-SPh)2Fe2(CO)64 and [μ-η2(S,S)][PhC(S)C(S)Ph]Fe2(CO)65. Complex 5 was characterized by X-ray crystallography. The formation of complexes 4 and 5 was unexpected since it involved a fragmentation of the organic ligand 1 during its reaction with Fe2(CO)9. The electrochemical studies of 1, complexes 2 and 3 were undertaken in order to get information about the chemical behaviors of the intermediates generated by electron transfer. The results of cyclic voltammetry studies of 2 and 1 suggested that the reaction of 1 with Fe2(CO)9 involved two competitive reactions: (i) a thermal reaction which led to the expected compounds 2 and 3 and (ii) an electron transfer reaction involving a fragmentation of starting ligand 1 led to the unexpected complex 5. The required electrons may be provided by iron during the thermal decay of complexes 2 or 3 or Fe2(CO)9.  相似文献   

7.
When dpktch was reacted with ZnCl2 in refluxing acetonitrile in air [ZnCl23-dpktch)] was isolated in good yield. Infrared spectra suggest weaker binding of dpktch in [ZnCl23-dpktch)] than in [CdCl23-dpktch)]. 1H-NMR studies in non-aqueous media show that [ZnCl23-dpktch)] is sensitive to changes in its environment and exchanges its amide proton. Electronic absorption spectral measurements confirmed the sensitivity of [ZnCl23-dpktch)] to changes in its surroundings and show inter-conversion between two intra-ligand-charge-transfer transitions (ILCT) at 330?±?2 nm and 404?±?2 associated with [ZnCl23-dpktch)] and its conjugate base. Thermo-optical measurements in non-aqueous dmf and dmso show facile inter-conversion between [ZnCl23-dpktch)] and its conjugate base, respectively. Also, it is shown that protonation of dmf by [ZnCl23-dpktch)] is exothermic (standard enthalpy of protonation ΔHθ ?=??40.7?±?1.8 kJ mol?1), but endothermic for dmso (ΔHθ ?=?+8.3?±?1.5 kJ mol?1). Chemical stimuli in concentrations as low as 5.0?×?10?7 M can be detected and determined using [ZnCl23-dpktch)] in non-aqueous media. X-ray crystallographic studies on a monoclinic, P21/n single crystal of [ZnCl23-dpktch)] confirmed the N,N,O-coordination of dpktch and revealed interdigitated units of [ZnCl23-dpktch)] connected via a web of hydrogen bonds.  相似文献   

8.
《Tetrahedron: Asymmetry》1998,9(18):3223-3229
The complexes [(η6-p-iPrC6H4Me)Ru(NO2pesa)Cl] 2, [(η6-p-iPrC6H4Me)Ru(oxazsa)Cl] 3 and [(η6-p-iPrC6H4Me)Ru(pepy)Cl] 4, chiral in the chelate ligand and chiral at the ruthenium atom, have been prepared by reaction of [(η6-p-iPrC6H4Me)RuCl2]2 with the anions of the (S)-configured bidentate N,O- and N,N-ligands. [(η6-p-iPrC6H4Me)Ru(pesa)I] 5 was synthesized by halide exchange. The diastereomer ratios of compounds 24 with respect to the stereogenic ruthenium atom are in CDCl3 2a:2b=81:19, 3a:3b=77:23 and 4a:4b=61:39. Compound 5 is obtained diastereomerically pure. An X-ray structure analysis of 3 shows (RRu,SC)-configuration  相似文献   

9.
Two α-diimine ligands were prepared in 60–70% yield via p-toluenesulfonic acid-catalyzed condensation reactions from benzil with 4-bromoaniline and with p-anisidine. Palladium(II) complexes were prepared from both ligands in 70–80% yield. X-ray structures were obtained for the ligand prepared from p-anisidine and its palladium(II) complex. A notable feature observed in the former was its unconjugated C–N double bonds, both in the (E)-configuration. The latter structure possessed two molecules of the metal complex in its unit cell, both of which have diimine cores with a degree of conjugation and a nonideal square-planar geometry around palladium caused by the small bite angles (79.61(3) and 79.15(3)°) of the diimine ligands. Solution-phase electronic absorption spectra of the ligands in chloroform have two bands from ππ ? and nπ ? transitions at 269–345?nm. Absorption spectra of the complexes in chloroform exhibited bands attributed to ligand-centered transitions that were red-shifted as compared to free ligands. Only the spectrum obtained from a chloroform solution of the palladium(II) complex with the diimine ligand prepared from p-anisidine featured a band at approximately 520?nm, which was assigned to a combination of d π(Pd)→π ? and n(Cl)→π ? transitions.  相似文献   

10.
Solvothermal reactions of CuX (X?=?Br, SCN, CN) with bis(4-phenyl-pyrazol-1-yl)methane (phpzm) gave two 2-D coordination polymers, [Cu(μ-Br)(μ-phpzm)] n (1) and [{Cu(μ-SCN)}2(μ-phpzm)] n (2), and a 1-D coordination polymer, [(phpzm)Cu(μ-CN)] n (3). Compounds 13 were characterized by elemental analysis, IR spectra, and X-ray crystallography. Compounds 1 and 2 have 2-D networks in which split-stair [Cu(μ-Br)] n chains (1) or staircase-like [Cu(μ-SCN)] n double chains (2) are linked by μ-phpzm bridges. Compound 3 consists of a zigzag chain formed by linking [Cu(phpzm)] fragments via cyanide bridges. Luminescence properties of 13 along with phpzm in the solid state at ambient temperature were also investigated.  相似文献   

11.
The tridentate Schiff base H2L was synthesized by the condensation of equimolar amount of 1-amino-2-propanol and salicylaldehyde. The reaction of H2L with an equimolar amount of Cu(CH3COO)2·H2O in methanol leads to the formation of the tetranuclear Cu4L4, 1. However, reaction of equimolar amount of H2L, copper(II) acetate, and 2,4,6-trimethylaniline in methanol forms a mixture of products which includes a discrete mononuclear complex Cu(L′)2, 2m (where HL′ is a bidentate ligand), in addition to the tetranuclear Cu4L4 species, 2c. In both tetranuclear cubane species, the tridentate H2L is both a chelating and a bridging ligand, after deprotonation of the enolic and the phenolic OH. The copper(II) centers are five-coordinate with a [N, O4] donor set from the ligands. The coordination geometry about each copper is distorted square pyramidal with one nitrogen and two oxygen from one ligand and two oxygen from adjacent ligands in the next unit of the cubane. In mononuclear 2m, the ligand is bidentate and the coordination geometry around copper(II) is square planar. The absorption spectra strongly suggest that tetranuclear 1 interacts with CT-DNA.  相似文献   

12.
《Polyhedron》2001,20(9-10):1065-1070
Decomplexation of Ca3(thd)6 by mono- and bidentate N-donors [morpholine, dimorpholinoethane (DIMOE), TMEDA, bipyridine] afforded the corresponding adducts Ca(thd)2L [L=morpholine (1a), DIMOE (1b), TMEDA (2)] and {Ca(thd)2}2(bipy) (3). All complexes have been fully characterised by elemental analysis, FT-IR and 1H NMR spectroscopy. Compounds 1b and 3 have also been characterised by X-ray crystallography. The structure of 3 is based on six- and seven-coordinated Ca centres; it is the first dimeric volatile Lewis base adduct of Ca(thd)2. The thermal behaviour of all derivatives has been studied by thermal gravimetric analysis.  相似文献   

13.
14.
Synthesis of a group of carbonyl rhenium coordination compounds with hydrospirophosphorane ligands was carried out and described. Different symmetrical HP(OCH2CH2NH)2 L1 , HP(OCH2CMe2NH)2 L2 , HP(OC6H4NH)2 L3 , and unsymmetrical ligands HP (OCMe2CMe2O)(OC6H4NH) L4 were found to coordinate to the rhenium center as bidentate P,N donor ligands yielding fac-[ReCl (CO)3 Ln ], where n = 1 – 4. Furthermore, monodentate coordination was also observed in some cases, as was clearly presented in the case of [ReCl(CO)2( L4- κ2P,N)( L4- κP)] complex. All of the complexes were characterized using optical spectroscopy. Single-crystalX-ray diffraction was also performed in the case of fac-[ReCl(CO)3 L3 ], fac-[ReCl(CO)3 L4 ], [Re(CO)2( L2 )2]Cl and [ReCl (CO)2( L4- κ2P,N)( L4- κP)] samples. Complexes [ReCl(CO)3 L3 ] and [ReCl (CO)3 L4 ], both bearing rings of conjugated double bonds within hydrospirophosphorane ligands, exhibited luminescence. Catalytic properties of rhenium complexes were assessed using the representative fac-[ReCl (CO)3 L2 ] complex in the dimerization reaction of terminal alkynes. An efficient and selective procedure for synthesis of the E - enynes was developed. Coupling of (2-chlorophenyl)acetylene was mediated by [ReCl (CO)3 L2 ]/TBAF system with a 100% conversion rate. Different substituents within aromatic alkynes were tolerated and the resulting products were dependent on the nature of the substituents.  相似文献   

15.
The dimeric starting material [Ru(η6-p-cymene)(μ-Cl)Cl]2 reacts with the phosphino-amides o-Ph2P–C6H4CO–NH–R [R = iPr (a), Ph (b), 4-MeC6H4 (c), 4-FC6H4 (d)] to give the mononuclear compounds 1ad [RuCl(η6-p-cymene)(o-Ph2P–C6H4–CO–NH–R)]Cl. The subsequent reaction of these complexes with KPF6 produced the cationic species 2ad [RuCl(η6-p-cymene)(o-Ph2P–C6H4–CO–NH–R)][PF6] in which phosphino-amides also act as rigid P,O-chelating ligands. The molecular structures of 2bd were determined crystallographically. Amide deprotonation is achieved when complexes 2ad were made react with 1 M aqueous solution of KOH, affording the corresponding neutral species 3ad [RuCl(η6-p-cymene)(o-Ph2P–C6H4–CO–N–R)] in which a P,N-coordination mode is suggested.  相似文献   

16.
The complex [(η6-p-cymene)Ru(μ-Cl)Cl]21 reacts with pyrazole ligands (3a-g) in acetonitrile to afford the amidine derivatives of the type [(η6-p-cymene)Ru(L)(3,5-HRR′pz)](BF4)2 (4a-f), where L = {HNC(Me)3,5-RR′pz}; R, R′ = H (4a); H, CH3 (4b); C6H5 (4c); CH3, C6H5 (4d) OCH3 (4e); and OC2H5 (4f), respectively. The ligand L is generated in situ through the condensation of 3,5-HRR′pz with acetonitrile under the influence of [(η6-p-cymene)RuCl2]2. The complex [(η6-C6Me6)Ru(μ-Cl)Cl]22 reacts with pyrazole ligands in acetonitrile to yield bis-pyrazole derivatives such as [(η6-C6Me6)Ru (3,5-HRR′pz)2Cl](BF4) (5a-b), where R, R′ = H (5a); H, CH3 (5b), as well as dimeric complexes of pyrazole substituted chloro bridged derivatives [{(η6-C6Me6)Ru(μ-Cl) (3,5-HRR′pz)}2](BF4)2 (5c-g), where R, R′ = CH3 (5c); C6H5 (5d); CH3, C6H5 (5e); OCH3 (5f); and OC2H5 (5g), respectively. These complexes were characterized by FT-IR and FT-NMR spectroscopy as well as analytical data. The molecular structures1 of representative complexes [(η6-C6Me6)Ru{3(5)-Hmpz}2Cl]+5b, [(η6-C6Me6)Ru(μ-Cl)(3,5-Hdmpz)]22+5c and [(η6-C6Me6)Ru(μ-Cl){3(5)Me,5(3)Ph-Hpz}]22+5e were established by single crystal X-ray diffraction studies.  相似文献   

17.
Synthesis and X-ray crystal structures of three new terpyridine-based Pb(II) complexes, {[Pb(ttpy)(μ-AcO)]2}(SCN)2 (1) (ttpy?=?4′-tolyl-2,2′:6′,2″-terpyridine), [Pb(Clphtpy)(AcO)(ClO4)] (2), and [Pb(Clphtpy)(SCN)2] (3) (Clphtpy?=?4′-(4-chlorophenyl)-2,2′:6′,2″-terpyridine), are described. The synthesized materials have been characterized, also, by CHN elemental analysis, 1H NMR, and IR spectroscopy. The structural analyses showed that, in the solid state, the coordination number of Pb(II) in 1, 2, and 3 are six, seven, and five, respectively. In the complexes, the lone-pair electrons of Pb(II) are stereochemically active and the coordination geometry of Pb(II) is hemidirected. The structures of the three complexes were compared and the effect of counter ion is described. The antibacterial activity of 1 and previously reported {[Pb(ttpy)(μ-AcO)]2}(PF6)2 (1A) and {[Pb(ttpy)(μ-AcO)I]2} (1B) were tested by minimum inhibitory concentration method to investigate the effect of counter ions on biological activity of the compounds. Also, cytotoxicity test was assessed using 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide assay to determine the maximum non-toxic concentration of ttpy, Pb(II), and their complexes to HepG2 cells. Effective lead detoxification was observed for 1, 1A, and 1B.  相似文献   

18.
19.
20.
The synthesis and characterization of the oxo-centered carboxylato-bridged trinuclear iron(III) complex, triaquahexakis(2-betaine)(3-oxo)triiron(III) perchlorate heptahydrate are described. X-ray crystallography shows that the FeIII atom in the complex has a slightly distorted octahedral geometry, coordinated by four oxygen atoms from different betaine ligands [Fe—;O = 2.009(3) 2.034(3) Å], one aqua ligand [Fe—O = 2.028(4) and 2.031(3) Å] and the central 3-oxo atom [Fe—O = 1.917(2) and 1.917(3) Å]. The central oxygen is ideally coplanar with the plane of the three metal atoms. Magnetic susceptibility data (4–320 K) show the presence of an antiferromagnetic exchange interaction with a coupling constant of J = –20.2 cm–1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号