首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aiming at advancing storage‐ring‐based ultrafast X‐ray science, over the past few years many upgrades have been undertaken to continue improving beamline performance and photon flux at the Femtoslicing facility at BESSY II. In this article the particular design upgrade of one of the key optical components, the zone‐plate monochromator (ZPM) beamline, is reported. The beamline is devoted to optical pump/soft X‐ray probe applications with 100 fs (FWHM) X‐ray pulses in the soft X‐ray range at variable polarization. A novel approach consisting of an array of nine off‐axis reflection zone plates is used for a gapless coverage of the spectral range between 410 and 1333 eV at a designed resolution of EE = 500 and a pulse elongation of only 30 fs. With the upgrade of the ZPM the following was achieved: a smaller focus, an improved spectral resolution and bandwidth as well as excellent long‐term stability. The beamline will enable a new class of ultrafast applications with variable optical excitation wavelength and variable polarization.  相似文献   

2.
The irradiation‐induced damages and structure modifications of rare earths doped powellite single crystal have been precisely studied using optical and electron microscopy techniques, including optical interferometry, confocal micro‐Raman spectroscopy and transmission electron microscopy. The surface of powellite crystal pops out anisotropically after exposing under Ar ion beam, with a saturation swelling value of 2.0% along a‐axis and 1.3% along the c‐axis of powellite at high dose. Raman mapping on focused ion‐beam sections (5 × 3 µm2) perpendicular to the irradiated surface reveals that irradiation damage induces orientation‐dependent compressive stresses in powellite. However, no significant anisotropic effect has been found on the irradiation‐induced structural disorder in powellite. At low dose (0.012 dpa), the main irradiation‐induced defects created in powellite crystal are small defect clusters. By comparison, the dominant kinds of defects in high‐dose (5.0 dpa) sample are dislocations loops and networks. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Multilevel quantum coherence and its quantum‐vacuum counterpart, where a three‐level dark state is involved, are suggested in order to achieve new photonic and quantum optical applications. It is shown that such a three‐level dark state in a four‐level tripod‐configuration atomic system consists of three lower levels, where constructive and destructive quantum interference between two control transitions (driven by two control fields) arises. We point out that the controllable optical response due to the double‐control tunable quantum interference can be utilized to design some fascinating new photonic devices such as logic gates, photonic transistors and switches at quantum level. A single‐photon two‐input XOR logic gate (in which the incident “gate” photons are the individual light quanta of the two control fields) based on such an effect of optical switching control with an EIT (electromagnetically induced transparency) microcavity is suggested as an illustrative example of the application of the dark‐state manipulation via the double‐control quantum interference. The present work would open up possibility of new applications in both fundamental physics (e.g., field quantization and relevant quantum optical effects in artificial systems that can mimic atomic energy levels) and applied physics (e.g., photonic devices such as integrated optical circuits at quantum level).  相似文献   

4.
Conventional phase diffraction gratings can be used to localize the incoming optical radiation in the near‐field region. A new design of the binary phase diffraction grating is proposed with embedded pupil opaque mask inside each stripe. By means of numerical simulations, it is shown that with this masked phase grating the spatial resolution of the near‐field localization can be substantially improved and brought even beyond the solid immersion limit (λ/2n). Moreover, due to anomalous apodization effect, the subdiffraction field localization is accompanied by intensity enhancement as compared to the non‐masked design. The pupil mask rearranges the optical fluxes within the stripes and promotes the Fano resonances excitation in the periodic step lattice. This can be important for advancing the phase grating‐based super‐resolution technologies, including subdiffraction imaging, interferometry, and surface fabrication.  相似文献   

5.
We present a simple analytical model to describe the stimulated Raman Stokes scattering (SRS) linear polarization spectroscopy of fluorescent dye solutions in liquid‐core optical fibers (LCOFs). In this scheme, the linear polarization direction of the pump pulse is set parallel to the y‐axis through a straight polarization‐maintaining LCOF, in which the energy of the total optical field is kept invariant, and different fluorescence dyes are used to generate different first‐order Stokes intensities. We demonstrate the SRS of all‐trans‐β‐carotene and fluorescein in carbon disulfide (CS2) solutions due to the optical field‐induced reorientation effect, which makes the first‐order Stokes polarization direction rotate by an angle of 88° or 61°, respectively. This demonstrates the good agreement between the theory presented and the experiment. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
In this work, a detailed study of the structural, electronic, and absorption properties of crystalline 7,2′‐anhydro‐β‐d ‐arabinosylorotidine (Cyclo ara‐O) in the pressure range of 0–350 GPa is performed by density functional theory calculations. The detail analysis of the crystal with increasing pressure shows that complex transformations occur in Cyclo ara‐O under compression. In addition, the b‐direction is much stiffer than the a‐ and c‐axis at 0–330 GPa, suggesting that the Cyclo ara‐O crystal is anisotropic in the certain pressure region. In the pressure range of 110–290 GPa, repeated formations and disconnections of covalent bonds in O7–O6* and C3–C6* occur several times, resulting in a new six‐atom ring that forms at 220, 270, and 290 GPa, while a five‐atom ring and seven‐atom ring form between two adjacent molecules at 300 and 340 GPa, respectively. Then, the analysis of the band gap and DOS (PDOS) of Cyclo ara‐O indicates that its electronic character has changed at 300 GPa into an excellent insulator, but the electron transition is much easier at 350 GPa. Moreover, the relatively high optical activity with the pressure increases of Cyclo ara‐O is seen from the absorption spectra, and two obvious structural transformations are also observed at 180 and 230 GPa, respectively. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
In this research work, we propose all‐optical transistor based on metallic nanoparticle cross‐chains geometry. The geometry of the proposed device consists of two silver nanoparticle chains arranged along the x‐ and z‐axis. The x‐chain contains a Kerr nonlinearity, the source beam is set at the left side of the later, while the control beam is located at the top side of the z‐chain. The control beam can turn ON and OFF the light transmission of an incoming light. We report a theoretical model of a very small all‐optical transistor proof‐of‐conceptmade of optical ‘light switching light'concept. We show that the transmission efficiency strongly depends on the control beam and polarization of the incoming light. We investigate the influence of a perfect reflector and reflecting substrate on the transmission of the optical signal when the control beam is turned ON and OFF. These new findings make our unique design a potential candidate for future highly‐integrated optical information processing chips.  相似文献   

8.
We present the next‐to‐next‐to‐leading order post‐Newtonian (PN) spin(1)‐spin(2) Hamiltonian for two self‐gravitating spinning compact objects. If both objects are rapidly rotating, then the corresponding interaction is comparable in strength to a 4PN effect. The Hamiltonian is checked via the global Poincaré algebra with the center‐of‐mass vector uniquely determined by an ansatz.  相似文献   

9.
We reveal the intrinsic band‐to‐band photoluminescence (PL) in Tl‐based anisotropic semiconductors by means of confocal spectroscopy. The PL achieves largest value for kc , where c is the layers stacking axis, and is dependent on polarization. In TlGaSe2, the band edge absorption spectra were determined at different excitation geometry by using techniques of depth‐resolved free‐carrier absorption (FCA) and photoacoustic response (PAR). A strong absorption enhancement is detected in a large spectral area in the near‐surface region lateral to ab plane. The band‐to‐band absorption enhancement is the most probable cause for high PL intensity. The near‐surface behavior, different from the bulk, might implement useful photonic functionality at room temperature (RT). (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
In Dy3+ and Li+ codoped ZnO nanowires, the additives accumulate preferentially in {0001} planes, resulting in serious breakdown of the translational symmetry in ab plane and modification of the phonon oscillation field. Not only acoustic overtones, silent optical modes, surface optical (SO) phonon modes, and multi‐phonon processes can be effectively observed in the nonresonant Raman scattering (RS) and the Fourier‐transform infrared (FTIR) spectra, but the quasi‐LO and TO modes of mixed A1 and E1 symmetry also show a noticeable red shift from E1 symmetry (in ab plane) to A1 symmetry (along c axis). The presence of dislocations and internal strain at the surface layer rich in additives, coming from the segregation of additives, forms a quasi‐bilayer system, resulting in the appearance and enhancement of SO phonon modes in RS and FTIR spectra. The Fano interference, originating from the interaction between the discrete scattering from phonons and the continuum scattering from laser‐induced electrons in the doped nanostructures, leads to typical asymmetric lineshapes on the lower wavenumber sides. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Traditional detour‐phase hologram is a powerful optical device for manipulating phase and amplitude of light, but it is usually not sensitive to the polarization of light. By introducing the light‐metasurface interaction mechanism to the traditional detour phase hologram, we design a novel plasmonic nano‐slits assisted polarization selective detour phase meta‐hologram, which has attractive advantages of polarization multiplexing ability, broadband response, and ultra‐compact size. The meta‐hologram relies on the dislocations of plasmonic slits to achieve arbitrary phase distributions, showing strong polarization selectivity to incident light due to the plasmonic response of deep‐subwavelength slits. To verify its polarization sensitive and broadband responses, we experimentally demonstrate two holographic patterns of an optical vortex and an Airy beam at p‐ and s‐polarized light with wavelengths of 532nm, 633nm and 780nm, respectively. Furthermore, we realize an application example of the meta‐hologram as a polarization multiplexed photonic device for multi‐channel optical angular momentum (OAM) generation and detection. Such meta‐holograms could find widespread applications in photonics, such as chip‐level beam shaping and high‐capacity OAM communication.

  相似文献   


12.
We report complete spatial shaping (both phase and amplitude) of the second‐harmonic beam generated in a nonlinear photonic crystal. Using a collinear second‐order process in a nonlinear computer generated hologram imprinted on the crystal, the desired beam is generated on‐axis and in the near field. This enables compact and efficient one‐dimensional beam shaping in comparison to previously demonstrated off‐axis Fourier holograms. We experimentally demonstrate the second‐harmonic generation of high‐order Hermite–Gauss, top hats and arbitrary skyline‐shaped beams.

  相似文献   


13.
Silicon carbide (SiC) is often used for electronic devices operating at elevated temperatures. Spectroscopic temperature measurements are of high interest for device monitoring because confocal Raman microscopy provides a very high spatial resolution. To this end, calibration data are needed that relate Raman line‐shift and temperature. The shift of the phonon wavenumbers of single crystal SiC was investigated by Raman spectroscopy in the temperature range from 3 to 112°C. Spectra were obtained in undoped 6H SiC as well as in undoped and nitrogen‐doped 4H SiC. All spectra were acquired with the incident laser beam oriented parallel as well as perpendicular to the c‐axis to account for the anisotropy of the phonon dispersion. Nearly all individual peak centers were shifting linearly towards smaller wavenumbers with increasing temperature. Only the peak of the longitudinal optical phonon A1(LO) in nitrogen‐doped 4H SiC was shifting to larger wavenumbers. For all phonons, a linear dependence of the Raman peaks on both parameters, temperature and phonon frequency, was found in the given temperature range. The linearity of the temperature shift allows for precise spectroscopic temperature measurements. Temperature correction of Raman line‐shifts also provides the ability to separate thermal shifts from mechanically induced ones. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
The X‐ray Powder Diffraction (XPD) beamline at the National Synchrotron Light Source II is a multi‐purpose high‐energy X‐ray diffraction beamline with high throughput and high resolution. The beamline uses a sagittally bent double‐Laue crystal monochromator to provide X‐rays over a large energy range (30–70 keV). In this paper the optical design and the calculated performance of the XPD beamline are presented. The damping wiggler source is simulated by the SRW code and a filter system is designed to optimize the photon flux as well as to reduce the heat load on the first optics. The final beamline performance under two operation modes is simulated using the SHADOW program. For the first time a multi‐lamellar model is introduced and implemented in the ray tracing of the bent Laue crystal monochromator. The optimization and the optical properties of the vertical focusing mirror are also discussed. Finally, the instrumental resolution function of the XPD beamline is described in an analytical method.  相似文献   

15.
Luneburg lens and Maxwell‐fisheye lens are well‐known microwave and optical devices with distinct focusing properties. Here, a planar bifunctional Luneburg‐fisheye lens made of an anisotropic metasurface is presented, which features as a Luneburg along the horizontal optical axis, while as a fisheye along the vertical optical axis. A method to control the inhomogeneous indices of refraction along the two optical axes independently is proposed by designing an anisotropic and nonuniform metasurface, which can provide the required distributions of refractive indices approximately for Luneburg and fisheye lenses viewing from the two optical axes. Experiments in the microwave frequency range demonstrate very good performance of the planar bifunctional Luneburg‐fisheye lens. The proposed method opens up an avenue to design other kinds of bifunctional devices using metasurfaces in the microwave, terahertz, and even optical ranges.  相似文献   

16.
The photon echo (PE) spectroscopy and single‐molecule spectroscopy (SMS) may be combined to give a very powerful tool for comprehensive study of low‐temperature dynamics in dye‐doped disordered solids (polymers, glasses). At the same time, this type of studies are likely to reveal discrepancies when comparing characteristic times of optical dephasing T2 and single‐molecule zero‐phonon spectral lines (ZPL) broadening obtained from PE and SMS, correspondingly, for tetra‐tert‐butylterrylene in polyisobutylene in the temperature range of a few–dozen of Kelvins [see Phys. Status Solidi B 241 , 3480 and 3487 (2004)]. Inexplicably, PE‐experiments demonstrated T2‐times to be much shorter than it is sufficient to cause the corresponding ZPL broadening. Here we experimentally solve this problem and show that at T = 4.5–15 K the incoherent PE gives T2‐times which correspond to the narrowest SM ZPL. On the SM‐level there is a pronounced additional ZPL‐broadening due to spectral diffusion processes which are strongly dependent on the characteristics time of the measurement (tens of nanoseconds for PE and seconds for SMS). There is also a broad distribution of ZPL spectral widths for different SMs due to different local environments, that contribute differently to both the optical dephasing and the spectral diffusion processes, but always in addition to the value of inverse optical dephasing times measured using a PE technique.

  相似文献   


17.
A confocal full‐field X‐ray microscope has been developed for use as a novel three‐dimensional X‐ray imaging method. The system consists of an X‐ray illuminating `sheet‐beam' whose beam shape is micrified only in one dimension, and an X‐ray full‐field microscope whose optical axis is normal to the illuminating sheet beam. An arbitral cross‐sectional region of the object is irradiated by the sheet‐beam, and secondary X‐ray emission such as fluorescent X‐rays from this region is imaged simultaneously using the full‐field microscope. This system enables a virtual sliced image of a specimen to be obtained as a two‐dimensional magnified image, and three‐dimensional observation is available only by a linear translation of the object along the optical axis of the full‐field microscope. A feasibility test has been carried out at beamline 37XU of SPring‐8. Observation of the three‐dimensional distribution of metallic inclusions in an artificial diamond was performed.  相似文献   

18.
X‐ray absorption fine‐structure (XAFS) data were obtained for the V K‐edge for a series of anisotropic single crystals of (CrxV1–x)2O3. The data and the results were compared for the as‐prepared bulk single crystals (measured in fluorescence in two different orientations) and those ground to powder (measured in transmission). For the bulk single crystals, the glancing‐emergent‐angle (GEA) method was used to minimize fluorescence distortion. The reliability of the GEA technique was tested by comparing the polarization‐weighted single‐crystal XAFS data with the experimental powder data. These data were found to be in excellent agreement throughout the entire energy range. Thus, it was possible to reliably measure individual V–V contributions parallel and perpendicular to the c axis of the single crystals, i.e. those unavailable by powder data XAFS analysis. These experiments demonstrate that GEA is a premiere method for non‐destructive high‐photon‐count in situ studies of local structure in bulk single crystals.  相似文献   

19.
A self‐phase‐locked degenerate femtosecond optical parametric oscillator (OPO) based on the birefringent nonlinear material, bismuth triborate, BiB3O6, synchronously‐pumped by a Kerr‐lens‐mode‐locked Ti:sapphire laser at 800 nm is described. By exploiting versatile phase‐matching properties of BiB3O6, including large spectral and angular acceptance for parametric generation and low group velocity dispersion in the optical xz plane, stable self‐phase‐locked degenerate OPO operation centered at 1600 nm is demonstrated using collinear type I (eoo) interaction in a 1.5‐mm crystal at room temperature. The degenerate OPO output spectrum extends over 46 nm (∼5.4 THz) with 190 fs pulse duration for input pump pulses of 155 fs with a bandwidth of 7 nm. Phase coherence between the pump and degenerate output is verified using f‐2f interferometry, and discrete frequency beats caused by different carrier‐envelope‐offset frequencies are measured using radio frequency measurements. Photo shows a 1.5‐mm BiB3O6 crystal used as a nonlinear gain medium in a degenerate self‐phase‐locked femtosecond OPO operating at room temperature. The green beam is the result of non‐phase‐matched sum‐frequency mixing between the pump light and the sub‐harmonic OPO field at degeneracy.  相似文献   

20.
An optimization of the undulator layout of X‐ray free‐electron‐laser (FEL) facilities based on placing small chicanes between the undulator modules is presented. The installation of magnetic chicanes offers the following benefits with respect to state‐of‐the‐art FEL facilities: reduction of the required undulator length to achieve FEL saturation, improvement of the longitudinal coherence of the FEL pulses, and the ability to produce shorter FEL pulses with higher power levels. Numerical simulations performed for the soft X‐ray beamline of the SwissFEL facility show that optimizing the advantages of the layout requires shorter undulator modules than the standard ones. This proposal allows a very compact undulator beamline that produces fully coherent FEL pulses and it makes possible new kinds of experiments that require very short and high‐power FEL pulses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号