首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Microbeam radiation therapy (MRT) is a promising radiotherapy modality that uses arrays of spatially fractionated micrometre‐sized beams of synchrotron radiation to irradiate tumours. Routine dosimetry quality assurance (QA) prior to treatment is necessary to identify any changes in beam condition from the treatment plan, and is undertaken using solid homogeneous phantoms. Solid phantoms are designed for, and routinely used in, megavoltage X‐ray beam radiation therapy. These solid phantoms are not necessarily designed to be water‐equivalent at low X‐ray energies, and therefore may not be suitable for MRT QA. This work quantitatively determines the most appropriate solid phantom to use in dosimetric MRT QA. Simulated dose profiles of various phantom materials were compared with those calculated in water under the same conditions. The phantoms under consideration were RMI457 Solid Water (Gammex‐RMI, Middleton, WI, USA), Plastic Water (CIRS, Norfolk, VA, USA), Plastic Water DT (CIRS, Norfolk, VA, USA), PAGAT (CIRS, Norfolk, VA, USA), RW3 Solid Phantom (PTW Freiburg, Freiburg, Germany), PMMA, Virtual Water (Med‐Cal, Verona, WI, USA) and Perspex. RMI457 Solid Water and Virtual Water were found to be the best approximations for water in MRT dosimetry (within ±3% deviation in peak and 6% in valley). RW3 and Plastic Water DT approximate the relative dose distribution in water (within ±3% deviation in the peak and 5% in the valley). PAGAT, PMMA, Perspex and Plastic Water are not recommended to be used as phantoms for MRT QA, due to dosimetric discrepancies greater than 5%.  相似文献   

2.
Microbeam radiation therapy (MRT) is a novel irradiation technique for brain tumours treatment currently under development at the European Synchrotron Radiation Facility in Grenoble, France. The technique is based on the spatial fractionation of a highly brilliant synchrotron X‐ray beam into an array of microbeams using a multi‐slit collimator (MSC). After promising pre‐clinical results, veterinary trials have recently commenced requiring the need for dedicated quality assurance (QA) procedures. The quality of MRT treatment demands reproducible and precise spatial fractionation of the incoming synchrotron beam. The intensity profile of the microbeams must also be quickly and quantitatively characterized prior to each treatment for comparison with that used for input to the dose‐planning calculations. The Centre for Medical Radiation Physics (University of Wollongong, Australia) has developed an X‐ray treatment monitoring system (X‐Tream) which incorporates a high‐spatial‐resolution silicon strip detector (SSD) specifically designed for MRT. In‐air measurements of the horizontal profile of the intrinsic microbeam X‐ray field in order to determine the relative intensity of each microbeam are presented, and the alignment of the MSC is also assessed. The results show that the SSD is able to resolve individual microbeams which therefore provides invaluable QA of the horizontal field size and microbeam number and shape. They also demonstrate that the SSD used in the X‐Tream system is very sensitive to any small misalignment of the MSC. In order to allow as rapid QA as possible, a fast alignment procedure of the SSD based on X‐ray imaging with a low‐intensity low‐energy beam has been developed and is presented in this publication.  相似文献   

3.
Monte Carlo simulations are increasingly used for dose calculations in proton therapy due to its inherent accuracy. However, dosimetric deviations have been found using Monte Carlo code when high density materials are present in the proton beamline. The purpose of this work was to quantify the magnitude of dose perturbation caused by metal objects. We did this by comparing measurements and Monte Carlo predictions of dose perturbations caused by the presence of small metal spheres in several clinical proton therapy beams as functions of proton beam range and drift space. Monte Carlo codes MCNPX, GEANT4 and Fast Dose Calculator (FDC) were used. Generally good agreement was found between measurements and Monte Carlo predictions, with the average difference within 5% and maximum difference within 17%. The modification of multiple Coulomb scattering model in MCNPX code yielded improvement in accuracy and provided the best overall agreement with measurements. Our results confirmed that Monte Carlo codes are well suited for predicting multiple Coulomb scattering in proton therapy beams when short drift spaces are involved.  相似文献   

4.
5.
The Monte Carlo model for the photon-beam output from the Varian Clinac 2100 linear accelerator was validated to compare the calculated to measured PDD and beam dose profiles The Monte Carlo calculation method is considered to be the most accurate method for dose calculation in radiotherapy. The objective of this study is to build a Monte Carlo geometry of Varian Clinac 2100 linear accelerator as realistically as possible. The Monte Carlo codes used in this work were the BEAMnrc code to simulate the photons beam and the DOSXYZnrc code to examinate the absorbed dose in the water phantom. We have calculated percentage depth dose (PDD) and beam profiles of the 6 MV photon beam for the 6 × 6 cm2, 10 × 10 cm2 and 15 × 15 cm2 field sizes. We have used the gamma index technique for the quantitative evaluation to compare the measured and calculated distributions. Good agreement was found between calculated PDD and beam profile compared to measured data. The comparison was evaluated using the gamma index method and the criterions were 3% for dose difference and 3 mm for distance to agreement. The gamma index acceptance rate was more than 97% of both distribution comparisons PDDs and dose profiles and our results were more developed and accurate. The Varian Clinac 2100 linear accelerator was accurately modeled using Monte Carlo codes: BEAMnrc and DOSXYZnrc codes package.  相似文献   

6.
The protocol for image‐guided microbeam radiotherapy (MRT) developed for the Australian Synchrotron's Imaging and Medical Beamline (IMBL) is described. The protocol has been designed for the small‐animal MRT station of IMBL to enable future preclinical trials on rodents. The image guidance procedure allows for low‐dose monochromatic imaging at 50 keV and subsequent semi‐automated sample alignment in 3D with sub‐100 µm accuracy. Following the alignment, a beamline operation mode change is performed and the relevant beamline components are automatically aligned for the treatment (pink) beam to be delivered on the sample. Here, the small‐animal MRT station, the parameters and procedures for the image guidance protocol, as well as the experimental imaging results using phantoms are described. Furthermore, the experimental validation of the protocol using 3D PRESAGE® dosimeters is reported. It is demonstrated that the sample alignment is maintained after the mode change and the treatment can be delivered within the same spatial accuracy of 100 µm. The results indicate that the proposed approach is viable for preclinical trials of small‐animal MRT.  相似文献   

7.
A Monte Carlo algorithm has been developed to calculate the instrumental profile function of a powder diffraction synchrotron beamline. Realistic models of all optical elements are implemented in a ray‐tracing software. The proposed approach and the emerging paradigm have been investigated and verified for several existing X‐ray powder diffraction beamlines. The results, which can be extended to further facilities, show a new and general way of assessing the contribution of instrumental broadening to synchrotron radiation data, based on ab initio simulations.  相似文献   

8.
Microbeam radiation therapy (MRT), a preclinical form of radiosurgery, uses spatially fractionated micrometre‐wide synchrotron‐generated X‐ray beams. As MRT alone is predominantly palliative for animal tumors, the effects of the combination of MRT and a newly synthesized chemotherapeutic agent JAI‐51 on 9L gliosarcomas have been evaluated. Fourteen days (D14) after implantation (D0), intracerebral 9LGS‐bearing rats received either MRT, JAI‐51 or both treatments. JAI‐51, alone or immediately after MRT, was administered three times per week. Animals were kept up to ~20 weeks after irradiation or sacrificed at D16 or D28 after treatment for cell cycle analysis. MRT plus JAI‐51 increased significantly the lifespan compared with MRT alone (p = 0.0367). JAI‐51 treatment alone had no effect on rat survival. MRT alone or associated with JAI‐51 induced a cell cycle blockade in G2/M (p < 0.01) while the combined treatment also reduced the proportion of G0/G1 cells. At D28 after irradiation, MRT and MRT/JAI‐51 had a smaller cell blockade effect in the G2/M phase owing to a significant increase in tumor cell death rate (<2c) and a proportional increase of endoreplicative cells (>8c). The combination of MRT and JAI‐51 increases the survival of 9LGS‐bearing rats by inducing endoreduplication of DNA and tumor cell death; further, it slowed the onset of tumor growth resumption two weeks after treatment.  相似文献   

9.
The aim of this study was to validate the kilovoltage X‐ray energy spectrum on the ID17 beamline at the European Synchrotron Radiation Facility (ESRF). The purpose of such validation was to provide an accurate energy spectrum as the input to a computerized treatment planning system, which will be used in synchrotron microbeam radiotherapy trials at the ESRF. Calculated and measured energy spectra on ID17 have been reported previously but recent additions and safety modifications to the beamline for veterinary trials warranted a fresh investigation. The authors used an established methodology to compare X‐ray attenuation measurements in copper sheets (referred to as half value layer measurements in the radiotherapy field) with the predictions of a theoretical model. A cylindrical ionization chamber in air was used to record the relative attenuation of the X‐ray beam intensity by increasing thicknesses of high‐purity copper sheets. The authors measured the half value layers in copper for two beamline configurations, which corresponded to differing spectral conditions. The authors obtained good agreement between the measured and predicted half value layers for the two beamline configurations. The measured first half value layer was 1.754 ± 0.035 mm Cu and 1.962 ± 0.039 mm Cu for the two spectral conditions, compared with theoretical predictions of 1.763 ± 0.039 mm Cu and 1.984 ± 0.044 mm Cu, respectively. The calculated mean energies for the two conditions were 105 keV and 110 keV and there was not a substantial difference in the calculated percentage depth dose curves in water between the different spectral conditions. The authors observed a difference between their calculated energy spectra and the spectra previously reported by other authors, particularly at energies greater than 100 keV. The validation of the beam spectrum by the copper half value layer measurements means the authors can provide an accurate spectrum as an input to a treatment planning system for the forthcoming veterinary trials of microbeam radiotherapy to spontaneous tumours in cats and dogs.  相似文献   

10.
A microfocus X‐ray fluorescence spectroscopy beamline (BL‐16) at the Indian synchrotron radiation facility Indus‐2 has been constructed with an experimental emphasis on environmental, archaeological, biomedical and material science applications involving heavy metal speciation and their localization. The beamline offers a combination of different analytical probes, e.g. X‐ray fluorescence mapping, X‐ray microspectroscopy and total‐external‐reflection fluorescence characterization. The beamline is installed on a bending‐magnet source with a working X‐ray energy range of 4–20 keV, enabling it to excite K‐edges of all elements from S to Nb and L‐edges from Ag to U. The optics of the beamline comprises of a double‐crystal monochromator with Si(111) symmetric and asymmetric crystals and a pair of Kirkpatrick–Baez focusing mirrors. This paper describes the performance of the beamline and its capabilities with examples of measured results.  相似文献   

11.
The design and performance of the microfocus spectroscopy beamline at the Diamond Light Source are described. The beamline is based on a 27 mm‐period undulator to give an operable energy range between 2 and 20.7 keV, enabling it to cover the K‐edges of the elements from P to Mo and the L3‐edges from Sr to Pu. Micro‐X‐ray fluorescence, micro‐EXAFS and micro‐X‐ray diffraction have all been achieved on the beamline with a spot size of ~3 µm. The principal optical elements of the beamline consist of a toroid mirror, a liquid‐nitrogen‐cooled double‐crystal monochromator and a pair of bimorph Kirkpatrick–Baez mirrors. The performance of the optics is compared with theoretical values and a few of the early experimental results are summarized.  相似文献   

12.
13.
使用蒙特卡罗方法研究入射电子束参数对XHA600D医用电子直线加速器产生的剂量分布的影响,并确定优化的入射电子束参数。根据厂商提供的XHA600D加速器治疗头的几何、材料参数,使用蒙特卡罗程序EGSnrc对不同的入射电子束参数进行模拟并记录其在水模体中产生的剂量分布,将模拟结果与测量结果进行比较。模拟的入射电子束参数包括平均能量、径向强度分布、角度展宽和能量展宽;实验测量数据包括4 cm×4 cm、10 cm×10 cm、30 cm×30 cm射野条件下的百分深度剂量与离轴剂量。结果表明当入射电子束的平均能量为6 MeV、径向强度的半高宽(Full Width at Half Maximum, FWHM)为0.25 cm、角度展宽为0.15°时,模拟结果和测量结果吻合非常好。这些参数可以作为建立适用于XHA600D加速器的TPS(Treatment Planning System)剂量计算模型的基础参数。  相似文献   

14.
Stratified materials are of great importance for many branches of modern industry, e.g. electronics or optics and for biomedical applications. Examination of chemical composition of individual layers and determination of their thickness helps to get information on their properties and function. A confocal 3D micro X‐ray fluorescence (3D µXRF) spectroscopy is an analytical method giving the possibility to investigate 3D distribution of chemical elements in a sample with spatial resolution in the micrometer regime in a non‐destructive way. Thin foils of Ti, Cu and Au, a bulk sample of Cu and a three‐layered sandwich sample, made of two thin Fe/Ni alloy foils, separated by polypropylene, were used as test samples. A Monte Carlo (MC) simulation code for the determination of elemental concentrations and thickness of individual layers in stratified materials with the use of confocal 3D µXRF spectroscopy was developed. The X‐ray intensity profiles versus the depth below surface, obtained from 3D µXRF experiments, MC simulation and an analytical approach were compared. Correlation coefficients between experimental versus simulated, and experimental versus analytical model X‐ray profiles were calculated. The correlation coefficients were comparable for both methods and exceeded 99%. The experimental X‐ray intensity profiles were deconvoluted with iterative MC simulation and by using analytical expression. The MC method produced slightly more accurate elemental concentrations and thickness of successive layers as compared to the results of the analytical approach. This MC code is a robust tool for simulation of scanning confocal 3D µXRF experiments on stratified materials and for quantitative interpretation of experimental results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
X‐ray tubes have a broad range of applications worldwide, including several techniques for atomic physics, like X‐ray fluorescence, as well as for medical imaging, like computed tomography. The performances of X‐ray imaging detectors have shown to be significantly sensitive to the incident beam spectrum. Therefore, an accurate knowledge of the X‐ray beam becomes necessary for the emission source characterization and the whole imaging process comprehension. Direct measurements and suitable Monte Carlo simulations may be used to establish the X‐ray spectra. Dedicated Monte Carlo simulation routines, based on the PENELOPE code, have been developed to determine the Bremsstrahlung X‐ray spectra generated by conventional X‐ray tubes. The simulated spectra have been validated by comparison with the corresponding experimental data showing an overall good agreement. The incorporation of a suitably designed virtual grid allowed to assess the angular distribution of Bremsstrahlung yield, showing a remarkable anisotropy. In addition, a dedicated program has been developed for virtual imaging, which enables to perform suitable X‐ray absorption contrast images. Also, the developed program includes a user‐friendly graphic interface to allow the upload of required input parameters, which include setup arrangement, beam characteristics, sample properties and image simulation parameters (spatial resolution, tracks per run, etc.). The software includes dedicated subroutines which handle the physical process from X‐ray generation up to detector signal acquisition. The aim of the developed program is to perform virtual imaging by means of absorption contrast and using conventional X‐ray sources, which may be a useful tool for the study the X‐ray imaging techniques in several research fields as well as for educational purposes. The performed comparisons with experimental data have shown good agreement. The obtained results for X‐ray imaging may constitute useful information for the comprehension and improvement of X‐ray image quality, like absorption contrast optimization, detail visualization, definition and detectability. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
The layout and the optical performance of the SGM branch of the D09 bending‐magnet beamline, under construction at SESAME, are presented. The beamline is based on the Dragon‐type design and delivers photons over the spectral range 15–250 eV. One fixed entrance slit and a movable exit slit are used. The performance of the beamline has been characterized by calculating the mirror reflectivities and the grating efficiencies. The flux and resolution were calculated by ray‐tracing using SHADOW. The grating diffraction efficiencies were calculated using the GRADIF code. The results and the overall shapes of the predicted curves are in reasonable agreement with those obtained using an analytical formula.  相似文献   

17.
The discovery of the neutrino oscillation pattern with solar and atmospheric neutrinos has stimulated systematic studies with long-baseline accelerator experiments. Precise neutrino beamline calculations have demonstrated the importance and paucity of existing hadroproduction data needed to shape the primary meson production in targets and tune available Monte Carlo codes for hadronic shower simulation. After a brief introduction to the physics of neutrino beams, available hadron production data will be reviewed with regards to their parametrization. Fast simulations based on such parameterizations and full Monte Carlo simulations of neutrino beamlines will then be illustrated. The prospective impact of new hadroproduction experiments, such as HARP at CERN and MIPP at Fermilab, will be shown together with some neutrino beamline simulations.  相似文献   

18.
Medical imaging and radiation therapy are widely used synchrotron‐based techniques which have one thing in common: a significant dose delivery to typically biological samples. Among the ways to provide the experimenters with image guidance techniques indicating optimization strategies, Monte Carlo simulation has become the gold standard for accurately predicting radiation dose levels under specific irradiation conditions. A highly important hampering factor of this method is, however, its slow statistical convergence. A track length estimator (TLE) module has been coded and implemented for the first time in the open‐source Monte Carlo code GATE/Geant4. Results obtained with the module and the procedures used to validate them are presented. A database of energy‐absorption coefficients was also generated, which is used by the TLE calculations and is now also included in GATE/Geant4. The validation was carried out by comparing the TLE‐simulated doses with experimental data in a synchrotron radiation computed tomography experiment. The TLE technique shows good agreement versus both experimental measurements and the results of a classical Monte Carlo simulation. Compared with the latter, it is possible to reach a pre‐defined statistical uncertainty in about two to three orders of magnitude less time for complex geometries without loss of accuracy.  相似文献   

19.
The synchrotron‐based hard X‐ray nanotomography beamline, named 7C X‐ray Nano Imaging (XNI), was recently established at Pohang Light Source II. This beamline was constructed primarily for full‐field imaging of the inner structures of biological and material samples. The beamline normally provides 46 nm resolution for still images and 100 nm resolution for tomographic images, with a 40 µm field of view. Additionally, for large‐scale application, it is capable of a 110 µm field of view with an intermediate resolution.  相似文献   

20.
The X‐ray Powder Diffraction (XPD) beamline at the National Synchrotron Light Source II is a multi‐purpose high‐energy X‐ray diffraction beamline with high throughput and high resolution. The beamline uses a sagittally bent double‐Laue crystal monochromator to provide X‐rays over a large energy range (30–70 keV). In this paper the optical design and the calculated performance of the XPD beamline are presented. The damping wiggler source is simulated by the SRW code and a filter system is designed to optimize the photon flux as well as to reduce the heat load on the first optics. The final beamline performance under two operation modes is simulated using the SHADOW program. For the first time a multi‐lamellar model is introduced and implemented in the ray tracing of the bent Laue crystal monochromator. The optimization and the optical properties of the vertical focusing mirror are also discussed. Finally, the instrumental resolution function of the XPD beamline is described in an analytical method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号