首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
P K‐edge X‐ray absorption near‐edge structure (XANES) spectroscopy is a powerful method for analyzing the electronic structure of organic and inorganic phosphorus compounds. Like all XANES experiments, P K‐edge XANES requires well defined and readily accessible calibration standards for energy referencing so that spectra collected at different beamlines or under different conditions can be compared. This is especially true for ligand K‐edge X‐ray absorption spectroscopy, which has well established energy calibration standards for Cl (Cs2CuCl4) and S (Na2S2O3·5H2O), but not neighboring P. This paper presents a review of common P K‐edge XANES energy calibration standards and analysis of PPh4Br as a potential alternative. The P K‐edge XANES region of commercially available PPh4Br revealed a single, highly resolved pre‐edge feature with a maximum at 2146.96 eV. PPh4Br also showed no evidence of photodecomposition when repeatedly scanned over the course of several days. In contrast, we found that PPh3 rapidly decomposes under identical conditions. Density functional theory calculations performed on PPh3 and PPh4+ revealed large differences in the molecular orbital energies that were ascribed to differences in the phosphorus oxidation state (III versus V) and molecular charge (neutral versus +1). Time‐dependent density functional theory calculations corroborated the experimental data and allowed the spectral features to be assigned. The first pre‐edge feature in the P K‐edge XANES spectrum of PPh4Br was assigned to P 1s → P‐C π* transitions, whereas those at higher energy were P 1s → P‐C σ*. Overall, the analysis suggests that PPh4Br is an excellent alternative to other solid energy calibration standards commonly used in P K‐edge XANES experiments.  相似文献   

2.
A series of Ni dithiolene complexes Ni[S2C2(CF3)]2n (n = ?2, ?1, 0) ( 1 , 2 , 3 ) and a 1‐hexene adduct Ni[S2C2(CF3)2]2(C6H12) ( 4 ) have been examined by Ni K‐edge X‐ray absorption near‐edge structure (XANES) and extended X‐ray absorption fine‐structure (EXAFS) spectroscopies. Ni XANES for 1 – 3 reveals clear pre‐edge features and approximately +0.7 eV shift in the Ni K‐edge position for `one‐electron' oxidation. EXAFS simulation shows that the Ni—S bond distances for 1 , 2 and 3 (2.11–2.16 Å) are within the typical values for square planar complexes and decrease by ~0.022 Å for each `one‐electron' oxidation. The changes in Ni K‐edge energy positions and Ni—S distances are consistent with the `non‐innocent' character of the dithiolene ligand. The Ni—C interactions at ~3.0 Å are analyzed and the multiple‐scattering parameters are also determined, leading to a better simulation for the overall EXAFS spectra. The 1‐hexene adduct 4 presents no pre‐edge feature, and its Ni K‐edge position shifts by ?0.8 eV in comparison with its starting dithiolene complex 3 . Consistently, EXAFS also showed that the Ni—S distances in 4 elongate by ~0.046 Å in comparison with 3 . The evidence confirms that the neutral complex is `reduced' upon addition of olefin, presumably by olefin donating the π‐electron density to the LUMO of 3 as suggested by UV/visible spectroscopy in the literature.  相似文献   

3.
Density functional theory (DFT)-based relativistic calculations were performed to model the Ru L-edge X-ray absorption near edge structure (XANES) spectra of the hexaammineruthenium complex [Ru(NH3)6]3+ and “blue dimer” water oxidation catalyst, cis,cis- [(bpy)2(H2O)RuIIIORuIII(OH2)(bpy)2]4+ (bpy is 2,2-bipyridine). Two computational approaches were compared: simulations without the core-hole and by modeling of the core-hole within the Z+1 approximation. Good agreement between calculated and experimental XANES spectra is achieved without including the core-hole. Simulations with algorithms beyond the Z+1 approximation were only possible in a framework of the scalar relativistic treatment. Time-dependent DFT (TD-DFT) was used to compute the Ru L-edge spectrum for [Ru(NH3)6]3+ model compound. Three different core-hole treatments were compared in a real-space full multiple scattering XANES modeling within the Green function formalism (implemented in the FEFF9.5 package) for the [Ru(Mebimpy)(bpm)(H2O)]2+ complex. The latter approaches worked well in cases where spin–orbit treatment of relativistic effects is not required.  相似文献   

4.
Obtaining structural information of uranyl species at an atomic/molecular scale is a critical step to control and predict their physical and chemical properties. To obtain such information, experimental and theoretical L3‐edge X‐ray absorption near‐edge structure (XANES) spectra of uranium were studied systematically for uranyl complexes. It was demonstrated that the bond lengths (R) in the uranyl species and relative energy positions (ΔE) of the XANES were determined as follows: ΔE1 = 168.3/R(U—Oax)2 ? 38.5 (for the axial plane) and ΔE2 = 428.4/R(U—Oeq)2 ? 37.1 (for the equatorial plane). These formulae could be used to directly extract the distances between the uranium absorber and oxygen ligand atoms in the axial and equatorial planes of uranyl ions based on the U L3‐edge XANES experimental data. In addition, the relative weights were estimated for each configuration derived from the water molecule and nitrate ligand based on the obtained average equatorial coordination bond lengths in a series of uranyl nitrate complexes with progressively varied nitrate concentrations. Results obtained from XANES analysis were identical to that from extended X‐ray absorption fine‐structure (EXAFS) analysis. XANES analysis is applicable to ubiquitous uranyl–ligand complexes, such as the uranyl–carbonate complex. Most importantly, the XANES research method could be extended to low‐concentration uranyl systems, as indicated by the results of the uranyl–amidoximate complex (~40 p.p.m. uranium). Quantitative XANES analysis, a reliable and straightforward method, provides a simplified approach applied to the structural chemistry of actinides.  相似文献   

5.
The characteristics of pre‐edge peaks in K‐edge x‐ray absorption near edge structure (XANES) spectra of 3d transition metals were reviewed from viewpoints of the selection rule, coordination number, number of d‐electrons, and symmetry of the coordination sphere. The contribution of the electric dipole and quadrupole transition to the peaks was discussed on the basis of the group theory, polarized spectra, and theoretical calculations. The pre‐edge peak intensity for Td symmetry is larger than those for Oh symmetry for all 3d elements. The intense pre‐edge peak for tetrahedral species of 3d transition metals is not due to 1s–3d transition, but transition to the p component in d–p hybridized orbital. The mixing of metal 4p orbitals with the 3d orbitals depends strongly on the coordination symmetry, and the possibility is predictable by group theory. The transition of 1s electron to d orbitals is electric quadrupole component in any of the symmetries. The d–p hybridization does not occur with regular octahedral symmetry, and the weak pre‐edge peak consists of 1s–3d electric quadrupole transition. The pre‐edge peak intensity for a compound with a tetrahedral center changes as a function of the number of 3d electrons regardless of the kind of element; it is maximized at d0 and gradually decreases to zero at d10. The features of pre‐edge peaks in K‐edge XANES spectra for 4d elements and the L1‐edge for 5d elements are analogous with those for 3d elements, but the pre‐edge peak is broadened due to the wide natural width of the core level. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
The trace elements of scalp hair samples from ≥60‐year‐old dementia patients and normal persons have been studied by X‐ray absorption near‐edge spectroscopy (XANES) in fluorescent mode and wavelength‐dispersive X‐ray fluorescence spectrometry. Comparisons of hair trace element levels of age‐matched dementia patients and normal persons revealed significantly elevated amounts of calcium, chlorine and phosphorus in dementia patients relative to normal persons. The results of XANES measurements identify the chemical forms of deposited calcium and phosphorus in the hair samples of both dementia patients and normal persons to be calcium chloride (CaCl2) and phosphate (PO43?), respectively. The amount of sulfur in hairs of dementia patients was found to be not significantly different from that in normal persons. The sulfur K‐edge XANES spectra, however, show significantly higher accumulations of sulfur in the sulfate (SO42?) form in hairs of Alzheimer's disease and Parkinson's disease dementia patients. This study presents the possible roles of calcium, chlorine, phosphorus and sulfur in the etiology of dementia in elderly patients.  相似文献   

7.
A theoretical study of the X‐ray absorption near‐edge structure (XANES) spectra at the Mn K‐edge in the La1?xCaxMnO3 series is reported. The relationship between the edge shift, the Ca–La substitution and the distortion of the MnO6 octahedra in these systems has been studied. It is shown that, by correctly considering these effects simultaneously, the experimental XANES data are consistent with the presence of two different Mn local environments in the intermediate La1?xCaxMnO3 compounds. By taking into account the energy shift associated with the modification of the MnO6 distortion as Ca substitutes for La, it is possible to reproduce the XANES spectra of the intermediate‐doped compounds starting from the experimental spectra of the end‐members LaMnO3 and CaMnO3. These results point out the need to re‐examine the conclusions derived in the past from the simple analysis of the Mn K‐edge XANES edge‐shift in these materials. In particular, it is shown that the modification of the Mn K‐edge absorption through the La1?xCaxMnO3 series is well reproduced by considering the simultaneous presence of both distorted and undistorted octahedra and, consequently, that the existence of charge‐ordering phenomena cannot be ruled out from the XANES data.  相似文献   

8.
We investigate the electronic structures of hole-doped, La0.7Ca0.3MnO3, and electron-doped, La0.7Ce0.3MnO3, manganites by x-ray absorption near edge structure (XANES) spectroscopy at the O and Mn K-edges. While, the O K-edge XANES results indicate that Ca and Ce doping induce holes in O 2p derived states, the Mn K-edge XANES do not give any evidence for creation of the Mn4+ (or Mn2+) ions by Ca (or Ce) dopants. Such results further questions the validity of double exchange mechanism in understanding the anomalous properties of manganites.  相似文献   

9.
Sodium borosilicate glasses containing rhenium or technetium were fabricated and their vibrational spectra studied using confocal Raman microscopy. Glass spectra were interpreted relative to new high‐resolution spectra of pure crystalline NaReO4, KReO4, NaTcO4, and KTcO4 salts. Spectra of perrhenate and pertechnetate glasses exhibited sharp Raman bands, characteristic of crystalline salt species, superimposed on spectral features of the borosilicate matrix. At low concentrations of added KReO4 or KTcO4, the characteristic pertechnetate and perrhenate features are weak, whereas at high additions, sharp peaks from crystal field‐splitting and C4h symmetry dominate glass spectra, clearly indicating ReO4 or TcO4 is locally coordinated with K and/or Na. Peaks indicative of both K and Na salts are evident in many Raman spectra, with the Na form being favored at high concentrations of the source chemicals, where more K+ is available for ion exchange with Na+ from the base glass. The observed ion exchange likely occurred within depolymerized channels where nonbridging oxygens create segregation from the glass network in regions containing anions such as ReO4 and TcO4 as well as excess alkali cations. Although this anion exchange provides evidence of chemical mixing in the glass, it does not prove the added salts were homogeneously incorporated in the glass. The susceptibility to ion exchange from the base glass indicates that long‐term immobilization of Tc in borosilicate glass must account for excess charge compensating alkali cations in melt glass formulations. Published 2014. This article is a U. S. Government work and is in the public domain in the USA.  相似文献   

10.
Synchrotron‐based X‐ray absorption near‐edge structure (XANES) spectroscopy is becoming an increasingly used tool for the element speciation in complex samples. For phosphorus (P) almost all XANES measurements have been carried out at the K‐edge. The small number of distinctive features at the P K‐edge makes in some cases the identification of different P forms difficult or impossible. As indicated by a few previous studies, the P L2,3‐edge spectra were richer in spectral features than those of the P K‐edge. However, experimentally consistent spectra of a wide range of reference compounds have not been published so far. In this study a library of spectral features is presented for a number of mineral P, organic P and P‐bearing minerals for fingerprinting identification. Furthermore, the effect of radiation damage is shown for three compounds and measures are proposed to reduce it. The spectra library provided lays a basis for the identification of individual P forms in samples of unknown composition for a variety of scientific areas.  相似文献   

11.
Direct speciation of soil phosphorus (P) by linear combination fitting (LCF) of P K‐edge XANES spectra requires a standard set of spectra representing all major P species supposed to be present in the investigated soil. Here, available spectra of free‐ and cation‐bound inositol hexakisphosphate (IHP), representing organic P, and of Fe, Al and Ca phosphate minerals are supplemented with spectra of adsorbed P binding forms. First, various soil constituents assumed to be potentially relevant for P sorption were compared with respect to their retention efficiency for orthophosphate and IHP at P levels typical for soils. Then, P K‐edge XANES spectra for orthophosphate and IHP retained by the most relevant constituents were acquired. The spectra were compared with each other as well as with spectra of Ca, Al or Fe orthophosphate and IHP precipitates. Orthophosphate and IHP were retained particularly efficiently by ferrihydrite, boehmite, Al‐saturated montmorillonite and Al‐saturated soil organic matter (SOM), but far less efficiently by hematite, Ca‐saturated montmorillonite and Ca‐saturated SOM. P retention by dolomite was negligible. Calcite retained a large portion of the applied IHP, but no orthophosphate. The respective P K‐edge XANES spectra of orthophosphate and IHP adsorbed to ferrihydrite, boehmite, Al‐saturated montmorillonite and Al‐saturated SOM differ from each other. They also are different from the spectra of amorphous FePO4, amorphous or crystalline AlPO4, Ca phosphates and free IHP. Inclusion of reference spectra of orthophosphate as well as IHP adsorbed to P‐retaining soil minerals in addition to spectra of free or cation‐bound IHP, AlPO4, FePO4 and Ca phosphate minerals in linear combination fitting exercises results in improved fit quality and a more realistic soil P speciation. A standard set of P K‐edge XANES spectra of the most relevant adsorbed P binding forms in soils is presented.  相似文献   

12.
This work reports an X‐ray absorption near‐edge structure (XANES) spectroscopy study at the Ni K‐edge in the early stages of growth of NiO on non‐ordered SiO2, Al2O3 and MgO thin films substrates. Two different coverages of NiO on the substrates have been studied. The analysis of the XANES region shows that for high coverages (80 Eq‐ML) the spectra are similar to that of bulk NiO, being identical for all substrates. In contrast, for low coverages (1 Eq‐ML) the spectra differ from that of large coverages indicating that the local order around Ni is limited to the first two coordination shells. In addition, the results also suggest the formation of cross‐linking bonds Ni—O—M (M = Si, Al, Mg) at the interface.  相似文献   

13.
X‐ray absorption near‐edge spectroscopy (XANES) at the Mn K‐edge was used to investigate the environment of Mn in situ within the growth increments of the long‐lived freshwater bivalve species Diplodon chilensis patagonicus. Single XANES spectra and Mn Kα fluorescence distributions were acquired at submillimetre resolution (up to 100 µm × 50 µm), at Mn concentrations below the weight percent range (100–1000 µg g?1) in a high Ca matrix. The position and intensity of the pre‐edge feature in the shell spectrum resembles best that of the Mn(II)‐bearing reference compounds, suggesting that this is the oxidation state of Mn in the bivalve shells. By comparison with the XANES spectra of selected standard compounds, hypotheses about Mn speciation in the shell are also reported. In particular, different factors, such as provenance, ontogenetic age, variable Mn‐concentrations or seasonal shell deposition seem not to influence the speciation of the metal in this bivalve species.  相似文献   

14.
Synchrotron‐based L2,3‐edge absorption spectra show strong sensitivities to the local electronic structure and chemical environment. However, detailed physical information cannot be extracted easily without computational aids. Here, using the experimental Ti L2,3‐edges absorption spectrum of SrTiO3 as a fingerprint and considering full multiplet effects, calculations yield different energy parameters characterizing local ground state properties. The peak splitting and intensity ratios of the L3 and L2 set of peaks are carefully analyzed quantitatively, giving rise to a small hybridization energy around 1.2 eV, and the different hybridization energy values reported in the literature are further addressed. Finally, absorption spectra with different linearly polarized photons under various tetragonal crystal fields are investigated, revealing a non‐linear orbital–lattice interaction, and a theoretical guidance for material engineering of SrTiO3‐based thin films and heterostructures is offered. Detailed analysis of spectrum shifts with different tetragonal crystal fields suggests that the eg crystal field splitting is a necessary parameter for a thorough analysis of the spectra, even though it is not relevant for the ground state properties.  相似文献   

15.
To obtain direct evidence of the formation of the Ni–Mo–S phase on NiMo/Al2O3 catalysts under high‐pressure hydrodesulfurization conditions, a high‐pressure EXAFS chamber has been constructed and used to investigate the coordination structure of Ni and Mo species on the catalysts sulfided at high pressure. The high‐pressure chamber was designed to have a low dead volume and was equipped with polybenzimidazole X‐ray windows. Ni K‐edge k3χ(k) spectra with high signal‐to‐noise ratio were obtained using this high‐pressure chamber for the NiMo/Al2O3 catalyst sulfided at 613 K and 1.1 MPa over a wide k range (39.5–146 nm?1). The formation of Ni–Mo and Mo–Ni coordination shells was successfully proved by Ni and Mo K‐edge EXAFS measurement using this chamber. Interatomic distances of these coordination shells were almost identical to those calculated from Ni K‐edge EXAFS of NiMo/C catalysts sulfided at atmospheric pressure. These results support the hypothesis that the Ni–Mo–S phase is formed on the Al2O3‐supported NiMo catalyst sulfided under high‐pressure hydrodesulfurization conditions.  相似文献   

16.
Cadmium (Cd) has a high toxicity and resolving its speciation in soil is challenging but essential for estimating the environmental risk. In this study partial least‐square (PLS) regression was tested for its capability to deconvolute Cd L3‐edge X‐ray absorption near‐edge structure (XANES) spectra of multi‐compound mixtures. For this, a library of Cd reference compound spectra and a spectrum of a soil sample were acquired. A good coefficient of determination (R2) of Cd compounds in mixtures was obtained for the PLS model using binary and ternary mixtures of various Cd reference compounds proving the validity of this approach. In order to describe complex systems like soil, multi‐compound mixtures of a variety of Cd compounds must be included in the PLS model. The obtained PLS regression model was then applied to a highly Cd‐contaminated soil revealing Cd3(PO4)2 (36.1%), Cd(NO3)2·4H2O (24.5%), Cd(OH)2 (21.7%), CdCO3 (17.1%) and CdCl2 (0.4%). These preliminary results proved that PLS regression is a promising approach for a direct determination of Cd speciation in the solid phase of a soil sample.  相似文献   

17.
The cluster calculations of K and L2,3 edge XANES of K and Cl in KCl within the multiple scattering theory formalism using nonlocal HF potentials with abd without consideration of core hole field were performed. For K spectra the influence of the core hole potential is rather weak and the results are similar to those obtained with Xα potentials. For L2,3 spectra, particularly for that of K+, core hole field leads to a radical redistribution of oscillator strength caused mainly by the spatial rearrangement of d like states. Calculated XANES curves show good over-all agreement with the experimental spectra (the L2,3 absorption of K+ in KCl was measured using the synchrotron radiation of the USSR Academy of Sciences storage ring VEPP-2M in Novosibirsk).  相似文献   

18.
The total energies and structural parameters of SrTcO3 are calculated by means of the generalized gradient approximation (GGA) plus on-site Coulomb interaction corrections (GGA+U) method. G-type antiferromagnetic (G-AFM) is found to be ground state, in consistence with the previous experimental result. The distortions around Sr and Tc upon magnetic transition are compared and the change of distortion for SrO bond upon magnetic transition is found to be 25.83 times of the change for TcO bond. Our results point to an active role played by Sr in magnetostructural coupling in SrTcO3.  相似文献   

19.
To obtain reliable in situ information on the distribution and speciation of Pb in plants with low Pb content, special attention needs to be paid to the synchrotron radiation based micro‐X‐ray fluorescence and micro‐X‐ray absorption near edge structure (μ‐XANES) spectrometry to avoid specious results in the chosen XRF region of interest and speciation linear combination fitting. First, an Arabidopsis thaliana shoot cultured in a Pb solution is analyzed to obtain two‐dimensional Pb distribution graphs, where an overlap of Pb, As, Se, and Br lines in synchrotron radiation based micro‐X‐ray fluorescence spectra is found. To avoid this overlap, (1)As K‐L3 and Pb L3‐M5, (2)As K‐M3, (3)Pb L2‐M4, (4)Se K‐L3, and (5)Br K‐M3 lines should be chosen in the region of interest. The Pb content in the seed coat, root, and stem are 48.2, 17.3, and 5.8 times higher, respectively, than in the leaf, while the Pb content in the seed coat, root, stem, and leaf increased 3458, 1241, 420, and 72 times, respectively, compared with the A. thaliana sample without a Pb solution soak. Second, Pb speciation of the same shoot is analyzed using μ‐XANES. It is important to define a combination fitting range because different possible Pb combinations can emerge using different ranges. Different speciations were found in the root[Pb(Ac)2 and PbSO4], stem[Pb(Ac)2 and Pb3(PO4)2], leaf[Pb(OH)2 and Pb5Cl(PO4)3], and seed coat[Pb3(PO4)2, Pb(OH)2, and PbCO3] between the fitting range of E0 ? 20eV and E0 + 70eV. A more complete Pb XANES database with more references, especially organic Pb compounds, is needed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Using X-ray absorption near-edge structure spectroscopy (XANES), we investigate the local electronic structure of phosphorus (P) and its chemical valence in laser-ablated n-type (as-grown), and p-type (annealed) P-doped ZnO thin films. Both the P L 1- and P L 2,3-edge XANES spectra reveal that the valence state of P is 3− (P3−) in the p-type as well as in the n-type P-doped ZnO. However, the peak intensity is stronger in the former than that in the latter, suggesting that P replaces O (O2− sites with the P3−) after rapid thermal annealing. The Zn and O K-edges XANES spectra consistently demonstrate that, in the p-type state, P ions substitutionally occupy O sites in the ZnO lattice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号