首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 263 毫秒
1.
At the National Synchrotron Radiation Research Center (NSRRC), which operates a 1.5 GeV storage ring, a dedicated small‐angle X‐ray scattering (SAXS) beamline has been installed with an in‐achromat superconducting wiggler insertion device of peak magnetic field 3.1 T. The vertical beam divergence from the X‐ray source is reduced significantly by a collimating mirror. Subsequently the beam is selectively monochromated by a double Si(111) crystal monochromator with high energy resolution (ΔE/E? 2 × 10?4) in the energy range 5–23 keV, or by a double Mo/B4C multilayer monochromator for 10–30 times higher flux (~1011 photons s?1) in the 6–15 keV range. These two monochromators are incorporated into one rotating cradle for fast exchange. The monochromated beam is focused by a toroidal mirror with 1:1 focusing for a small beam divergence and a beam size of ~0.9 mm × 0.3 mm (horizontal × vertical) at the focus point located 26.5 m from the radiation source. A plane mirror installed after the toroidal mirror is selectively used to deflect the beam downwards for grazing‐incidence SAXS (GISAXS) from liquid surfaces. Two online beam‐position monitors separated by 8 m provide an efficient feedback control for an overall beam‐position stability in the 10 µm range. The beam features measured, including the flux density, energy resolution, size and divergence, are consistent with those calculated using the ray‐tracing program SHADOW. With the deflectable beam of relatively high energy resolution and high flux, the new beamline meets the requirements for a wide range of SAXS applications, including anomalous SAXS for multiphase nanoparticles (e.g. semiconductor core‐shell quantum dots) and GISAXS from liquid surfaces.  相似文献   

2.
A focusing system based on a polycapillary half‐lens optic has been successfully tested for transmission and fluorescence µ‐X‐ray absorption spectroscopy at a third‐generation bending‐magnet beamline equipped with a non‐fixed‐exit Si(111) monochromator. The vertical positional variations of the X‐ray beam owing to the use of a non‐fixed‐exit monochromator were shown to pose only a limited problem by using the polycapillary optic. The expected height variation for an EXAFS scan around the Fe K‐edge is approximately 200 µm on the lens input side and this was reduced to ~1 µm for the focused beam. Beam sizes (FWHM) of 12–16 µm, transmission efficiencies of 25–45% and intensity gain factors, compared with the non‐focused beam, of about 2000 were obtained in the 7–14 keV energy range for an incoming beam of 0.5 × 2 mm (vertical × horizontal). As a practical application, an As K‐edge µ‐XANES study of cucumber root and hypocotyl was performed to determine the As oxidation state in the different plant parts and to identify a possible metabolic conversion by the plant.  相似文献   

3.
The research program at the biomedical imaging facility requires a high‐flux hard‐X‐ray monochromator that can also provide a wide beam. A wide energy range is needed for standard radiography, phase‐contrast imaging, K‐edge subtraction imaging and monochromatic beam therapy modalities. The double‐crystal Laue monochromator, developed for the BioMedical Imaging and Therapy facility, is optimized for the imaging of medium‐ and large‐scale samples at high energies with the resolution reaching 4 µm. A pair of 2 mm‐thick Si(111) bent Laue‐type crystals were used in fixed‐exit beam mode with a 16 mm vertical beam offset and the first crystal water‐cooled. The monochromator operates at energies from 25 to 150 keV, and the measured size of the beam is 189 mm (H) × 8.6 mm (V) at 55 m from the source. This paper presents our approach in developing a complete focusing model of the monochromator. The model uses mechanical properties of crystals and benders to obtain a finite‐element analysis of the complete assembly. The modeling results are compared and calibrated with experimental measurements. Using the developed analysis, a rough estimate of the bending radius and virtual focus (image) position of the first crystal can be made, which is also the real source for the second crystal. On the other hand, by measuring the beam height in several points in the SOE‐1 hutch, the virtual focus of the second crystal can be estimated. The focusing model was then calibrated with measured mechanical properties, the values for the force and torque applied to the crystals were corrected, and the actual operating parameters of the monochromator for fine‐tuning were provided.  相似文献   

4.
X‐ray beam‐position stability is indispensable in cutting‐edge experiments using synchrotron radiation. Here, for the first time, a beam‐position feedback system is presented that utilizes an easy‐to‐use X‐ray beam‐position monitor incorporating a diamond‐fluorescence screen. The acceptable range of the monitor is above 500 µm and the feedback system maintains the beam position within 3 µm. In addition to being inexpensive, the system has two key advantages: it works without a scale factor for position calibration, and it has no dependence on X‐ray energy, X‐ray intensity, beam size or beam shape.  相似文献   

5.
Two semi‐transparent imaging beam‐position monitors developed at the ESRF have been installed at the micro‐analysis beamline ID22 for monitoring the angular stability of the X‐ray beam. This system allows low‐frequency (10 Hz) angular beam stability measurements at a submicroradian range. It is demonstrated that the incoming macro‐beam angular fluctuations are one of the major sources of focal spot instabilities downstream of the Kirkpatrick–Baez mirrors. It is also shown that scanning the energy by rotating the so‐called fixed‐exit monochromator induces some unexpected angular beam shifts that are, to a large extent, deterministic.  相似文献   

6.
The performance of a diamond X‐ray beam position monitor is reported. This detector consists of an ionization solid‐state chamber based on a thin single‐crystal chemical‐vapour‐deposition diamond with position‐sensitive resistive electrodes in a duo‐lateral configuration. The detector's linearity, homogeneity and responsivity were studied on beamlines at Synchrotron SOLEIL with various beam sizes, intensities and energies. These measurements demonstrate the large and homogeneous (absorption variation of less than 0.7% over 500 µm × 500 µm) active area of the detector, with linear responses independent of the X‐ray beam spatial distribution. Due to the excellent charge collection efficiency (approaching 100%) and intensity sensitivity (0.05%), the detector allows monitoring of the incident beam flux precisely. In addition, the in‐beam position resolution was compared with a theoretical analysis providing an estimation of the detector's beam position resolution capability depending on the experimental conditions (X‐ray flux, energy and readout acquisition time).  相似文献   

7.
The hard X‐ray beamline BL8 at the superconducting asymmetric wiggler at the 1.5 GeV Dortmund Electron Accelerator DELTA is described. This beamline is dedicated to X‐ray studies in the spectral range from ~1 keV to ~25 keV photon energy. The monochromator as well as the other optical components of the beamline are optimized accordingly. The endstation comprises a six‐axis diffractometer that is capable of carrying heavy loads related to non‐ambient sample environments such as, for example, ultrahigh‐vacuum systems, high‐pressure cells or liquid‐helium cryostats. X‐ray absorption spectra from several reference compounds illustrate the performance. Besides transmission measurements, fluorescence detection for dilute sample systems as well as surface‐sensitive reflection‐mode experiments have been performed. The results show that high‐quality EXAFS data can be obtained in the quick‐scanning EXAFS mode within a few seconds of acquisition time, enabling time‐resolved in situ experiments using standard beamline equipment that is permanently available. The performance of the new beamline, especially in terms of the photon flux and energy resolution, is competitive with other insertion‐device beamlines worldwide, and several sophisticated experiments including surface‐sensitive EXAFS experiments are feasible.  相似文献   

8.
X‐ray beam stability is crucial for acquiring high‐quality data at synchrotron beamline facilities. When the X‐ray beam and defining apertures are of similar dimensions, small misalignments driven by position instabilities give rise to large intensity fluctuations. This problem is solved using extremum seeking feedback control (ESFC) for in situ vertical beam position stabilization. In this setup, the intensity spatial gradient required for ESFC is determined by phase comparison of intensity oscillations downstream from the sample with pre‐existing vertical beam oscillations. This approach compensates for vertical position drift from all sources with position recovery times <6 s and intensity stability through a 5 µm aperture measured at 1.5% FWHM over a period of 8 hours.  相似文献   

9.
It is shown that an extensive set of accurate ionization‐chamber measurements with a primary polychromatic synchrotron X‐ray beam transmitted through various filter combinations/thicknesses can be used to quite effectively estimate the absolute flux distribution. The basic technique is simple but the `inversion' of the raw data to extract the flux distribution is a fundamentally ill‐posed problem. It is demonstrated, using data collected at the Imaging and Medical Beamline (IMBL) of the Australian Synchrotron, that the absolute flux can be quickly and reliably estimated if a suitable choice of filters is made. Results are presented as a function of the magnetic field (from 1.40 to 4.00 T) of the superconducting multi‐pole wiggler insertion device installed at IMBL. A non‐linear least‐squares refinement of the data is used to estimate the incident flux distribution and then comparison is made with calculations from the programs SPECTRA, XOP and spec.exe. The technique described is important not only in estimating flux itself but also for a variety of other, derived, X‐ray properties such as beam quality, power density and absorbed‐dose rate. The applicability of the technique with a monochromatic X‐ray beam for which there is significant harmonic contamination is also demonstrated. Whilst absolute results can also be derived in this monochromatic beam case, relative (integrated) flux values are sufficient for our primary aim of establishing reliable determinations of the percentages of the various harmonic components.  相似文献   

10.
For spectral imaging of chemical distributions using X‐ray absorption near‐edge structure (XANES) spectra, a modified double‐crystal monochromator, a focusing plane mirrors system and a newly developed fluorescence‐type X‐ray beam‐position monitoring and feedback system have been implemented. This major hardware upgrade provides a sufficiently stable X‐ray source during energy scanning of more than hundreds of eV for acquisition of reliable XANES spectra in two‐dimensional and three‐dimensional images. In recent pilot studies discussed in this paper, heavy‐metal uptake by plant roots in vivo and iron's phase distribution in the lithium–iron–phosphate cathode of a lithium‐ion battery have been imaged. Also, the spatial resolution of computed tomography has been improved from 70 nm to 55 nm by means of run‐out correction and application of a reconstruction algorithm.  相似文献   

11.
An innovative scheme to carry out continuous‐scan X‐ray absorption spectroscopy (XAS) measurements similar to quick‐EXAFS mode at the Energy‐Scanning EXAFS beamline BL‐09 at INDUS‐2 synchrotron source (Indore, India), which is generally operated in step‐by‐step scanning mode, is presented. The continuous XAS mode has been implemented by adopting a continuous‐scan scheme of the double‐crystal monochromator and on‐the‐fly measurement of incident and transmitted intensities. This enabled a high signal‐to‐noise ratio to be maintained and the acquisition time was reduced to a few seconds from tens of minutes or hours. The quality of the spectra (signal‐to‐noise level, resolution and energy calibration) was checked by measuring and analysing XAS spectra of standard metal foils. To demonstrate the energy range covered in a single scan, a continuous‐mode XAS spectrum of copper nickel alloy covering both Cu and Ni K‐edges was recorded. The implementation of continuous‐scan XAS mode at BL‐09 would expand the use of this beamline in in situ time‐resolved XAS studies of various important systems of current technological importance. The feasibility of employing this mode of measurement for time‐resolved probing of reaction kinetics has been demonstrated by in situ XAS measurement on the growth of Ag nanoparticles from a solution phase.  相似文献   

12.
Single‐crystal diamond is a material with great potential for the fabrication of X‐ray photon beam‐position monitors with submicrometre spatial resolution. Low X‐ray absorption combined with radiation hardness and excellent thermal‐mechanical properties make possible beam‐transmissive diamond devices for monitoring synchrotron and free‐electron laser X‐ray beams. Tests were made using a white bending‐magnet synchrotron X‐ray beam at DESY to investigate the performance of a position‐sensitive diamond device using radiofrequency readout electronics. The device uniformity and position response were measured in a 25 µm collimated X‐ray beam with an I‐Tech Libera `Brilliance' system. This readout system was designed for position measurement and feedback control of the electron beam in the synchrotron storage ring, but, as shown here, it can also be used for accurate position readout of a quadrant‐electrode single‐crystal diamond sensor. The centre‐of‐gravity position of the F4 X‐ray beam at the DORIS III synchrotron was measured with the diamond signal output digitally sampled at a rate of 130 Msample s?1 by the Brilliance system. Narrow‐band filtering and digital averaging of the position signals resulted in a measured position noise below 50 nm (r.m.s.) for a 10 Hz bandwidth.  相似文献   

13.
Fabrication and testing of a prototype transmission‐mode pixelated diamond X‐ray detector (pitch size 60–100 µm), designed to simultaneously measure the flux, position and morphology of an X‐ray beam in real time, are described. The pixel density is achieved by lithographically patterning vertical stripes on the front and horizontal stripes on the back of an electronic‐grade chemical vapor deposition single‐crystal diamond. The bias is rotated through the back horizontal stripes and the current is read out on the front vertical stripes at a rate of ~1 kHz, which leads to an image sampling rate of ~30 Hz. This novel signal readout scheme was tested at beamline X28C at the National Synchrotron Light Source (white beam, 5–15 keV) and at beamline G3 at the Cornell High Energy Synchrotron Source (monochromatic beam, 11.3 keV) with incident beam flux ranges from 1.8 × 10?2 to 90 W mm?2. Test results show that the novel detector provides precise beam position (positional noise within 1%) and morphology information (error within 2%), with an additional software‐controlled single channel mode providing accurate flux measurement (fluctuation within 1%).  相似文献   

14.
Deformation of the first crystal of an X‐ray monochromator under the heat load of a high‐power beam, commonly referred to as `heat bump', is a challenge frequently faced at synchrotron beamlines. Here, quantitative measurements of the deformations of an externally water‐cooled silicon (111) double‐crystal monochromator tuned to a photon energy of 17.6 keV are reported. These measurements were made using two‐dimensional hard X‐ray grating interferometry, a technique that enables in situ at‐wavelength wavefront investigations with high angular sensitivity. The observed crystal deformations were of the order of 100 nm in the meridional and 5 nm in the sagittal direction, which lead to wavefront slope errors of up to 4 µrad in the meridional and a few hundred nanoradians in the sagittal direction.  相似文献   

15.
Two transmission‐mode diamond X‐ray beam position monitors installed at National Synchrotron Light Source (NSLS) beamline X25 are described. Each diamond beam position monitor is constructed around two horizontally tiled electronic‐grade (p.p.b. nitrogen impurity) single‐crystal (001) CVD synthetic diamonds. The position, angle and flux of the white X‐ray beam can be monitored in real time with a position resolution of 500 nm in the horizontal direction and 100 nm in the vertical direction for a 3 mm × 1 mm beam. The first diamond beam position monitor has been in operation in the white beam for more than one year without any observable degradation in performance. The installation of a second, more compact, diamond beam position monitor followed about six months later, adding the ability to measure the angular trajectory of the photon beam.  相似文献   

16.
During the last 20 years, beamline BL08B has been upgraded step by step from a photon beam‐position monitor (BPM) to a testing beamline and a single‐grating beamline that enables experiments to record X‐ray photo‐emission spectra (XPS) and X‐ray absorption spectra (XAS) for research in solar physics, organic semiconductor materials and spinel oxides, with soft X‐ray photon energies in the range 300–1000 eV. Demands for photon energy to extend to the extreme ultraviolet region for applications in nano‐fabrication and topological thin films are increasing. The basic spherical‐grating monochromator beamline was again upgraded by adding a second grating that delivers photons of energy from 80 to 420 eV. Four end‐stations were designed for experiments with XPS, XAS, interstellar photoprocess systems (IPS) and extreme‐ultraviolet lithography (EUVL) in the scheduled beam time. The data from these experiments show a large count rate in core levels probed and excellent statistics on background normalization in the L‐edge adsorption spectrum.  相似文献   

17.
A pre‐focused X‐ray beam at 12 keV and 9 keV has been used to illuminate a single‐bounce capillary in order to generate a high‐flux X‐ray microbeam. The BioCAT undulator X‐ray beamline 18ID at the Advanced Photon Source was used to generate the pre‐focused beam containing 1.2 × 1013 photons s?1 using a sagittal‐focusing double‐crystal monochromator and a bimorph mirror. The capillary entrance was aligned with the focal point of the pre‐focused beam in order to accept the full flux of the undulator beam. Two alignment configurations were tested: (i) where the center of the capillary was aligned with the pre‐focused beam (`in‐line') and (ii) where one side of the capillary was aligned with the beam (`off‐line'). The latter arrangement delivered more flux (3.3 × 1012 photons s?1) and smaller spot sizes (≤10 µm FWHM in both directions) for a photon flux density of 4.2 × 1010 photons s?1µm?2. The combination of the beamline main optics with a large‐working‐distance (approximately 24 mm) capillary used in this experiment makes it suitable for many microprobe fluorescence applications that require a micrometer‐size X‐ray beam and high flux density. These features are advantageous for biological samples, where typical metal concentrations are in the range of a few ng cm?2. Micro‐XANES experiments are also feasible using this combined optical arrangement.  相似文献   

18.
The layout and the characteristics of the hard X‐ray beamline BL10 at the superconducting asymmetric wiggler at the 1.5 GeV Dortmund Electron Accelerator DELTA are described. This beamline is equipped with a Si(111) channel‐cut monochromator and is dedicated to X‐ray studies in the spectral range from ~4 keV to ~16 keV photon energy. There are two different endstations available. While X‐ray absorption studies in different detection modes (transmission, fluorescence, reflectivity) can be performed on a designated table, a six‐axis kappa diffractometer is installed for X‐ray scattering and reflectivity experiments. Different detector set‐ups are integrated into the beamline control software, i.e. gas‐filled ionization chambers, different photodiodes, as well as a Pilatus 2D‐detector are permanently available. The performance of the beamline is illustrated by high‐quality X‐ray absorption spectra from several reference compounds. First applications include temperature‐dependent EXAFS experiments from liquid‐nitrogen temperature in a bath cryostat up to ~660 K by using a dedicated furnace. Besides transmission measurements, fluorescence detection for dilute sample systems as well as surface‐sensitive reflection‐mode experiments are presented.  相似文献   

19.
The IMCA‐CAT bending‐magnet beamline was upgraded with a collimating mirror in order to achieve the energy resolution required to conduct high‐quality multi‐ and single‐wavelength anomalous diffraction (MAD/SAD) experiments without sacrificing beamline flux throughput. Following the upgrade, the bending‐magnet beamline achieves a flux of 8 × 1011 photons s?1 at 1 Å wavelength, at a beamline aperture of 1.5 mrad (horizontal) × 86 µrad (vertical), with energy resolution (limited mostly by the intrinsic resolution of the monochromator optics) δE/E = 1.5 × 10?4 (at 10 kV). The beamline operates in a dynamic range of 7.5–17.5 keV and delivers to the sample focused beam of size (FWHM) 240 µm (horizontally) × 160 µm (vertically). The performance of the 17‐BM beamline optics and its deviation from ideally shaped optics is evaluated in the context of the requirements imposed by the needs of protein crystallography experiments. An assessment of flux losses is given in relation to the (geometric) properties of major beamline components.  相似文献   

20.
The X‐ray Powder Diffraction (XPD) beamline at the National Synchrotron Light Source II is a multi‐purpose high‐energy X‐ray diffraction beamline with high throughput and high resolution. The beamline uses a sagittally bent double‐Laue crystal monochromator to provide X‐rays over a large energy range (30–70 keV). In this paper the optical design and the calculated performance of the XPD beamline are presented. The damping wiggler source is simulated by the SRW code and a filter system is designed to optimize the photon flux as well as to reduce the heat load on the first optics. The final beamline performance under two operation modes is simulated using the SHADOW program. For the first time a multi‐lamellar model is introduced and implemented in the ray tracing of the bent Laue crystal monochromator. The optimization and the optical properties of the vertical focusing mirror are also discussed. Finally, the instrumental resolution function of the XPD beamline is described in an analytical method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号